期刊文献+

三维花状结构α-FeOOH纳米材料的制备与表征 被引量:5

Synthesis and Characterization of 3D Flower-likeα-FeOOH Nanostructures
下载PDF
导出
摘要 以硫酸亚铁、尿素及乙醇为原料,采用低温常压一步回流法制备了具有三维花状结构的α-FeOOH纳米材料.考察了反应时间、反应温度、尿素浓度和乙醇用量对其结构和形貌的影响及α-FeOOH纳米材料对双氯芬酸钠的吸附性能.实验结果表明,当反应温度为90℃、反应时间为6 h、尿素浓度为0.1 mol/L、乙醇的体积分数为20%时,所得α-FeOOH纳米材料具有规整的三维花状结构,对双氯芬酸钠的吸附量达199.2mg/g.基于扫描电子显微镜(SEM)和X射线衍射(XRD)分析,推断三维花状结构α-FeOOH的生长机制包括定向聚集和外延生长2个过程,反应初期生成的高活性晶核快速形成不规则橄榄状颗粒并定向聚集成短簇状结构,再沿z轴方向外延生长,形成长簇的三维花状结构. 3D flower-like α-FeOOH nanoparticles were synthesized by means of mild-temperature reflux method, and the samples were characterized via X-ray diffraction(XRD) and scanning electron microscopy ( SEM) . The influencing factors such as the reaction time, the reaction temperature, the concentration of urea, and the amount of ethanol were systematically investigated. The adsorption capacity of the α-FeOOH nanoparticles for diclofenac sodium was also tested. The results show that the sample prepared with 0. 1 mol/L urea and 20%( volume fraction ) ethanol at 90 ℃ for 6 h is in high structural uniformity with good crystal quality and has the best adsorption capactity of 199. 2 mg/g for diclofenac sodium. The formation mechanism of the flower-like α-FeOOH nanostructures is involved with a combination of oriented attachment and epitaxial overgrowth. The fresh nanonuclei are formed in solution at the early reaction stage with high surface energy, then aggregate together to minimize the interfacial energy. The olive-like agglomerates orient into short clusters, continue to grow along z axis till the complete flower-like structures are formed.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2015年第1期48-54,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51178117) 厦门市杰出青年科技人才创新技术项目(批准号:3502Z20126009) 福建省自然科学基金(批准号:2012J05094)资助~~
关键词 三维花状结构 Α-FEOOH 低温回流 双氯芬酸钠 吸附特性 3D flower-like structure α-FeOOH Low-temperature reflux Diclofenac sodium Adsorption property
  • 相关文献

参考文献36

  • 1Murakami N. , Matsuo T. , Tsubota T. , Ohno T. , Catal. Commun. , 2011, 12(5), 341-344.
  • 2Cao J. L. , Li G. J. , Wang Y. , Sun G. , Bala H. , Wang X. D. , Zhang Z. Y. , Int. J. Photoenergy, 2014, 468921-1--468921-8.
  • 3WangB., WuH., YuL., XuR., LimT. T., LouX. W.,Adv. Mater. ,2012,24(8), 1111-1116.
  • 4Wang Y., Ma J., Chen K., Phys. Chem. Chem. Phys. , 2013, 15(44), 19415-19421.
  • 5LiH., LiW., ZhangY., WangT., WangB., XuW., JiangL., SongW., ShuC., WangC., J. Mater. Chem. ,2011,21(22), 7878-7881.
  • 6LiZ. C. , Guan M. Y. , LouZ. S. , Shang T. M. , MicroNanoLett. , 2012, 7(1), 33-36.
  • 7Wang S. , Wang C. , Liu C. , Zhang M. , Ma H. , Li J. , Colloid Surf. A-Physicochem. Eng. Asp. , 2012, 403, 29-34.
  • 8Chen H. F. , WeiG. D. , HanX. , LiS. , WangP. P. , ChubikM., GromovA. , WangZ. P., HanW. , J. Mater. Sci.-Mater. Elec- tron. , 2011, 22 (3) , 252-259.
  • 9Zhang D. E. , Zhang X. J. , Ni X. M. , Zheng H. G. , Mater. Lett. , 2006, 60(15), 1915-1917.
  • 10Geng F. , Zhao Z. , Geng J. , Cong H. , Cheng H. M. , Mater. Lett., 2007, 61(26) , 4794-4796.

二级参考文献13

  • 1王晓娟,蒋晓红,郭新勇,王洪哲,张兴堂,李蕴才,杜祖亮.β-FeOOH纳米线的制备及表征[J].化学学报,2005,63(11):1033-1036. 被引量:6
  • 2Gallagher K.J..Nature[J],1970,226:1225-1228
  • 3Deliyanni E.A.,Bakoyannakis D.N.,Zouboulis A.I.et al..Microporous and Mesoporous Materials[J],2001,42:49-57
  • 4Tatsuo Ishikawa,Taiki Motoki,Ryuichi Katoh et al..J.Coll.Interface Sci.[J],2002,250:74-81
  • 5Amine K.,Yasuda H.,Yamachi M..J.Power Sources[J],1999,81/82:221-223
  • 6Atsushi Funabiki,Hideo Yasuda,Masanori Yamachi.J.Power Sources[J],2003,119-121:290-294
  • 7Kan Shihai,Yu San,Li Dongmei et al..J.Coll.Interface Sci.[J],1996,180:111-115
  • 8Xiong Yujie,Xie Yi,Chen Shaowei et al..Chem.Eur.J.[J],2003,9:4991-4996
  • 9Wang Jun,Chen Qianwang,Zeng Chuan et al..Adv.Mater.[J],2004,16:137-140
  • 10Xia Younan,Yang Peidong,Sun Yugang et al..Adv.Mater.[J],2003,15:353-389

共引文献3

同被引文献33

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部