期刊文献+

太湖地区小麦生育期麦田土壤铵态氮和硝态氮含量的模拟与预测 被引量:4

Modeling and forecasting of farmland NO_3^--N and NH_4^+-N content in wheat growth period in Tai Lake area
下载PDF
导出
摘要 [目的]以T-FACE(temperature-free air carbon dioxide enrichment)模拟的气候情景下的田间实测数据为参照,对DNDC模型在太湖地区的适用性及拟合效果进行分析,并预测农田土壤中无机氮素的变化趋势。[方法]基于太湖地区稻麦轮作体系的T-FACE田间试验,采用DNDC模型研究了温度升高和CO2含量升高对土壤中硝态氮和铵态氮含量变化的影响。[结果]DNDC模型对试验区耕作层土壤中硝态氮和铵态氮含量的模拟值与田间实测值较为吻合,相关系数分别为0.942 1(P<0.01)和0.763 6(P<0.05),具有较高的可信度。年降水量和氮肥使用量的敏感性指数较大,分别为-2.282、0.692(铵态氮)和-3.417、0.433(硝态氮)。[结论]试验区耕作层土壤内无机氮素含量受气候因子的影响较大,并存在明显的季节性差异。模拟结果在小麦生长季后期与实测值较接近;在生长季前期和施肥后以及CO2含量和温度升高处理后较实测值偏高。降水量和施肥量是影响无机态氮含量的关键因素,年平均温度、p H值也有一定影响。DNDC模型对其他参数的敏感性不高。 [Objectives]Based on the T-FACE( temperature-free air carbon dioxide enrichment) platform,the inorganic nitrogen content in soils was measured and used as a reliable standard to the simulated values by DNDC model in order to verify the DNDC model fitting degree in Tai Lake area under climate change condition and to predict the variation tendency of inorganic nitrogen. [Methods]The NO3^--N and NH4^+-N contents were measured and simulated by DNDC model in order to probe the influences of rising CO2 concentration and temperature. The T-FACE technique was used to enrich CO2 concentration in the open air in circular plots. Infrared equipments were used within T( temperature elevated) and CT( CO2 concentration and temperature elevated) circles to ensure the temperature being2 ℃ higher than ambient. Air blowers and infrared equipments were installed in the non-CO2 enriched arrays to ensure no indirect microclimate changes confounded the effects of treatments. A sensitivity analysis was carried out for all parameters selected. The parameters that showed a strong deviation across the selected input parameters range were sensitive. In contrast,parameters that were uniformly distributed were considered less sensitive. Then the most sensitive parameters would be confirmed. The main parameters in this study were mean air temperature,CO2 concentration,soil p H,soil organic carbon( SOC),and N applicating amount. The base values were set as the field situation. [Results]Both of annual precipitation and N applicating amount had substantial influence on N contents.The sensitivity indices were-2.282,0. 692 for NH4^+-N and- 3. 417,0. 433 for NO3^--N respectively. Simulated values fitted the tested values well during the wheat growth period. The significant correlation coefficients were 0.942 1( P〈0.01) and 0.763 6( P〈0.05) for NO3^--N and NH4^+-N respectively,which demonstrated that DNDC model can forecast inorganic nitrogen contents with high credibilityunder simulated climate change conditions. [Conclusions]The inorganic nitrogen contents in plough layer soil showed substantial difference due to season changes. The simulated values corresponded with the observed values very well in the late period of the wheat growing season,but it was considered to be much higher than the observed values in the early period of the wheat growing season. Meanwhile,the model also over-estimated the NO3^--N and NH4^+-N contents after N application,CO2 concentration and temperature enhancement. Annual precipitation and N application amount were the key factors to affect the inorganic nitrogen contents in soils. Moreover,mean annual temperature and soil p H may also be impact factors.
出处 《南京农业大学学报》 CAS CSCD 北大核心 2015年第1期93-100,共8页 Journal of Nanjing Agricultural University
基金 国家公益性行业(农业)科研专项(200903003) 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所)资助项目(0812201208)
关键词 T-FACE DNDC模型 硝态氮 铵态氮 气候变化 敏感性分析 T-FACE DNDC model NO-3-N NH+4-N climate change sensitivity analysis
  • 相关文献

参考文献22

  • 1Kennedy D. Breakthrough of the year[J]. Science,2002,298:2283.
  • 2Chavas D R,Izaurralde R C,Thomson A M,et al. Long-term climate change impacts on agricultural productivity in eastern China[J]. Agricultural and Forest Meteorology,2009,149:1118-1128.
  • 3Giorgi F,Shields Brodeur C,Bates G T. Regional climate change scenarios over the United States produced with a nested regional climate model[J]. Journal of Climate,1994,7(3):375-399.
  • 4程琨,潘根兴,邹建文,李恋卿,熊正琴,张旭辉,郑金伟.1949—2006年间中国粮食生产的气候变化影响风险评价[J].南京农业大学学报,2011,34(3):83-88. 被引量:14
  • 5Savabi R,Claudio M,Stockle O. Modeling the possible impact of increased CO2 and temperature on soil water halance,crop yield and soil erosion[J]. Environmental Modeling and Software,2001,16:631-640.
  • 6林洁,陈效民,张勇,潘根兴,张旭辉.基于BP神经网络的太湖典型农田土壤水分动态模拟[J].南京农业大学学报,2012,35(4):140-144. 被引量:15
  • 7秦大河,丁一汇,王绍武,王苏民,董光荣,林而达,刘春蓁,佘之祥,孙惠南,王守荣,伍光和.中国西部环境演变及其影响研究[J].地学前缘,2002,9(2):321-328. 被引量:90
  • 8Abdalla M,Jones M,Yeluripati J,et al. Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture[J]. Atmospheric Environment,2010,44:2961-2970.
  • 9Smith W N,Grant B B,Desjardins R L,et al. A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada[J]. Agriculture Ecosystems and Environment,2010,136:301-309.
  • 10林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报,1994(1):6-18. 被引量:229

二级参考文献90

共引文献418

同被引文献84

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部