期刊文献+

基于统计量模式分析的T-KPLS间歇过程故障监控 被引量:13

Fault monitoring batch process based on statistics pattern analysis of T-KPLS
下载PDF
导出
摘要 核函数的全影结构投影(total kernel projection to latent structures,T-KPLS)最近在故障监控领域取得了广泛应用,其实质是对数据矩阵的协方差矩阵进行分解,没有利用数据的高阶统计量等有用信息,在进行特征提取时会造成数据有用信息的丢失,导致故障识别效果差。为了解决此问题,提出了统计量模式分析(statistics pattern analysis,SPA)与核函数的全影结构投影法(total kernel projection to latent structures,T-KPLS)相结合的多向统计量模式分析的核函数的全影结构投影法(multi-way statistics pattern analysis total kernel projection to latent structures,MSPAT-KPLS)。该方法首先构造样本的不同阶次统计量,将数据从原始的数据空间映射到统计量样本空间,然后利用核函数将统计量样本空间映射到高维核空间并在质量变量的引导下将特征空间分为过程变量与质量变量相关、过程变量与质量变量无关、过程变量与质量变量正交和残差4个子空间;最后针对与质量变量相关和残差空间建立联合监控模型,当监控到有故障发生时进行故障变量追溯。最后将该方法应用到微生物发酵过程中,并与传统方法进行比较,发现该方法具有更好的监控性能。 Total kernel projection to latent structures (T-KPLS) has been widely used in the fault detection control field, its core idea is to conduct the covariance matrix decomposition of the data matrix, without using the higher-order statistics and other useful information of the data, which will cause an information loss in the feature extraction process, then result in a bad fault recognition performance. Aiming to solve the problem, a statistics pattern analysis (SPA) combing with the T-KPLS based multi-way statistics pattern analysis total kernel projection to latent structures (MSPAT-KPLS) is proposed. First, different order statistics of the data samples are constructed to map the data from the original data space into the statistic sample space, then utilize kernel function to map the statistic sample space into the higher dimensional kernel space, and according to the quality variable, the feature space will be divided into 4 subspaces, namely: process variable related to quality variable space, process variable not related to quality variable space, process variable orthogonal to quality variable space and residual error space; Lastly, aiming at the process variable related to quality variable subspace and the residual error space, different detection models are constructed, which will trace the fault variables when faults are detected. In the end, apply the proposed method on the microbial fermentation process, and the comparison results with the traditional methods show that the proposed method could achieve a better detection.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第1期265-271,共7页 CIESC Journal
基金 国家自然科学基金项目(61174109 61364009)~~
关键词 故障监控 核函数全影结构投影 统计量模式分析 fault monitoring total kernel projection to latent structrues statistics pattern analysis
  • 相关文献

参考文献20

  • 1Mori J C, Yu J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach [J]. Journal of Process Control, 2014, 24(1): 57-71.
  • 2Xiong H S, Gong X C, Qu H B. Monitoring batch to batch reproducibility of liquid-liquid extraction process using in-line near-infrared spectroscopy combined with multivariate analysis [J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70(11): 178-187.
  • 3贾润达,毛志忠,王福利.基于KPLS模型的间歇过程产品质量控制[J].化工学报,2013,64(4):1332-1339. 被引量:29
  • 4Stubbs S, Zhang J, Morris J L. Multiway interval partial least squares for batch process performance monitoring [J]. Industrial and Engineering Chemistry Research, 2014, 52 (35) : 12399-12407.
  • 5Geert C Jef V, Jan F. Discriminating between critical and noncritical disturbances in (bio)chemical bach processes using multi-model fault detection and end-quality prediction [J]. Industrial and Engineering Chemistry Research, 2012, 51(1): 12375-1238.
  • 6Naes T, Tomic O. Multi-block regression based on combination so for thogonalisatiort, PLS regressionand canonical correlation analysis [J]. Chemometrics and lntelligent Laboratory Systems, 2013, 124:32-42.
  • 7Li C Alcala C F, Qin S J, et al. Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models [J]. Industrial and Engineering Chemistry Research, 2010, 49(19):9175- 9183.
  • 8Zhou D, Li G Qin S J. Total projection to latent structures for process monitoring [J]. American Institute of Chemical Engineers, 2010, 56(1): 168-178.
  • 9Li G, Alcala C F, Qin S J, et al. Generalized reconstruction based contributions for output relevant fault diagnosis with application to the Tennessee Eastman process [J]. IEEE Transaction on Control Systems Technology, 2011, 19(5): 1114-1127.
  • 10Jackson J E. A User's Guide to Principal Components[M]. New York: Wiley, 1991.

二级参考文献43

  • 1邓晓刚,田学民.基于PCA相似系数的故障诊断方法[J].吉林大学学报(工学版),2004,34(z1):207-210. 被引量:1
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 3Srinivasan B, Palanki S, Bonvin D. Dynamic optimization of batch processes (I): Characterization of the nominal sol.ution [J]. Computers & Chemical Engineering, 2003, 27 (1): 1-26.
  • 4Wang D, Srinivasan R. Multi-model based real time final product quality control strategy for batch process [J].Computers & Chemical Engineering, 2009, 33 ( 5 ): 992-1003.
  • 5Kano M, Nakagawa Y. Data-based process monitoring,process control, and quality improvement : recent development and application in steel industry [ J ]. Computers & Chemical Engineering, 2008, 32 (1/2) : 12- 24.
  • 6Flores-Cerrillo J, MacGregor J F. Control of batch product quality by trajectory manipulation using latent variable models[J]. Journal of Process Control, 2004, 14 (5): 539-553.
  • 7Zhang Y W. Enhanced statistical analysis of nonlinear process using KPCA, KICA and SVM [J].Chemical Engineering Science, 2009, 64 (5) : 801-811.
  • 8Yacoub F, MacGregor J F. Procluct optimization and control in the latent variable space of nonlinear PLS models [J].Chemometrics and Intelligent Laboratory Systems, 2004, 70 (1): 63-74.
  • 9Shawe-Taylor J, Crisdanini N. Kernel Methods for Pattern Analysis [M]. Cambridge: Cambridge University Press, 2004 : 27.
  • 10Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space [ J ]. Journal of Machine Learning Research, 2001, 2 : 97-123.

共引文献40

同被引文献104

引证文献13

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部