期刊文献+

自增长混合神经网络及其在燃料电池建模中的应用 被引量:5

Self-growing hybrid neural network and its application for fuel cell modelling
下载PDF
导出
摘要 为了提高非线性辨识的精度,提出了一种基于混合算子的自增长混合神经网络。该神经网络通过自增长的混合隐含层结构,包括加算子和乘算子,形成神经元个数少、结果精确、增长快速的网络。论文在级联神经网络的结构基础上,提出GQPSOI算法来引导神经网络的结构自增长以及权值更新。通过对燃料电池的建模与比较分析,证明了方法的有效性和良好的应用前景。 A new self-growing neural network (NN) based on hybrid neurons is proposed for high accuracy of nonlinear identification. Hybrid neural network achieved the characteristics of rapid growth, accurate results and less neurons through hybrid hidden layer consist of summation units and multiplication units. A variant of quantum particle swarm optimizer called Guiding Quantum Particle Swarm Optimizer incorporating Immune algorithm (GQPSOI) to guide the growth of the neural network structure and weights updation. Through the fuel cell modeling and comparative analysis, the proposed method was proved to be effectiveness and of good application prospect.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第1期333-337,共5页 CIESC Journal
基金 国家自然科学基金项目(61273132) 中央高校基科研业务费专项资金项目(ZZ1014)~~
关键词 乘算子 粒子群 混合神经网络 multiplication neurons hybrid neural network
  • 相关文献

参考文献15

  • 1班晓娟,刘浩,徐卓然.一种基于能量人工神经元模型的自生长、自组织神经网络[J].自动化学报,2011,37(5):615-622. 被引量:5
  • 2李满天,王春林,王鹏飞,查富生,郭伟.一种基于万有引力的自生长神经网络算法[J].机械与电子,2013,31(10):3-5. 被引量:1
  • 3乔俊飞,韩红桂.RBF神经网络的结构动态优化设计[J].自动化学报,2010,36(6):865-872. 被引量:121
  • 4Fahlman S E, Lebiere C. The cascade-correlation learning architecture// Advances in Neural Information Processing Systems [M]. Los Altos, CA: Morgan Kaufmann, 1990:524-532.
  • 5Tun H M. Analysis of neural network based photo to caricature transformation using MATLAB [J]. Bahria University Journal of Information & Communication Technology, 2009, 2(1): 1-5.
  • 6Lee S W, Song H S. Emulation of spline networks through approximation of polynomials and step function of neural networks with cosine modulated symmetric exponential function[J]. Wreless Personal Communications, 2014, 2(1): 1-16.
  • 7Chandra B, Paul Varghese P. Applications of cascade correlation neural networks for cipher system identification [J]. Information Science and Engineering, 2007, 26:210-213.
  • 8Li Dazi, Hirasawa Kotaro, Hu Jinglu, Murata Junichi. Universal learning networks with multiplication neurons and its representation ability //Proc. of International Joint Conference on Neural Networks[C]. 2001:150-155.
  • 9Gao X Z, Wang X, Ovaska S J. Fusion of clonal selection algorithm and differential evolution method in training cascade-correlation neural network [J]. Neurocomputing, 2009, 72(10): 2483-2490.
  • 10Janson S, Middendorf M. A hierarchical partical swarm optimizer and its adaptive variant [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35(6): 1272-1282.

二级参考文献59

  • 1叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 2Chen S, Wang X X, Brown D J. Sparse incremental regression modeling using correlation criterion with boosting search. IEEE Signal Processing Letters, 2005, 12(3): 198-201.
  • 3Chen S, Wolfgang A, Harris C J, Hanzo L. Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems. IEEE Transactions on Neural Networks, 2008, 19(5): 737-745.
  • 4Conzalez J, Rojas I, Ortega J, Pomares H, Fernandez F J, Diaz A F. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 2003, 14(6): 1478-1495.
  • 5Leung F H F, Lam H K, Ling S H, Tam P K S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
  • 6Bors A G, Pitas I. Median radial basis function neural network. IEEE Transactions on Neural Networks, 1996, 7(6): 1351-1364.
  • 7Yin H, Allinson N M. Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks, 2001, 12(2): 405-411.
  • 8Esposito A, Marinaro M, Oricchio D, Scarpetta S. Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm. Neural Networks, 2000, 13(6): 651-665.
  • 9Fu X J, Wang L P. Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(3): 399-409.
  • 10Lu Y W, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks. Neural Computation, 1997, 9(2): 461-478.

共引文献126

同被引文献79

  • 1郭爱,陈维荣,李奇,刘志祥,李艳昆.燃料电池机车温度系统建模和控制[J].系统仿真学报,2015,27(1):133-141. 被引量:6
  • 2彭永臻,王之晖,王淑莹.基于BP神经网络的A/O脱氮系统外加碳源的仿真研究[J].化工学报,2005,56(2):296-300. 被引量:12
  • 3刘良宏,周兴贵,袁渭康.非线性分布参数系统状态估计的最佳测量位置[J].化工学报,1996,47(3):267-272. 被引量:8
  • 4刘毅,王海清.基于LS-SVM和Pensim仿真平台的青霉素发酵过程建模[J].化学反应工程与工艺,2006,22(3):252-258. 被引量:10
  • 5KULIKOVSKY A A.One-dimensional impedance of the cathode side of a pem fuel cell:exact analytical so- lution[J].Journal of the Electrochemical Society,2015,126(3):217-222.
  • 6LEI Xing,MAMLOUK M,SCOTT K.A two dimension- al agglomerate model for a proton exchange membrane fuel cell[J].Energy,2013,61:196-210.
  • 7CHAUDHAHY S,SACHAN V K,BHATTACHARYA P K.Two dimensional modeling of water uptake in pro- ton exchange membrane fuel cell[J].International Journal of Hydrogen Energy,2014,39(31):17802-17818.
  • 8BIZON N,0PR0ESCU M HiRACEANU M.Efficient energy control strategies for a standalone renewable/fu- el cell hybrid power source[J].Energy Conversion and Management,2015,90:93-110.
  • 9ZHAN Yuedong,GUO Youguang,ZHU Jianguo,et al. Power and energy management of grid/PEMFC/batter- y/supercapacitor hybrid power sources for UPS appli- cations[J].Electrical Power and Energy Systems,2015,67:598-612.
  • 10YANG YanxiajLUO Xu,DAI Chahua,et al.Dynamic modeling and dynamic responses of grid-connected fuel cell[J].International Journal of Hydrogen Energy,2014,39(26);14296-14305.

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部