期刊文献+

层层组装晶种法制备Mg-MOF-74膜及其分离性能 被引量:1

Preparation of Mg-MOF-74 membranes via layer-by-layer seeding and its separation properties
下载PDF
导出
摘要 以2,5-二羟基对苯二甲酸和乙酸镁溶液为原料通过交替浸渍层层组装法在α-Al2O3载体表面预置晶种层,再利用二次生长法制备出连续而致密的Mg-MOF-74晶体膜。采用X射线衍射(XRD)和扫描电镜(SEM)对膜进行了表征。实验结果表明:相比于原位溶剂热合成法,通过2,5-二羟基对苯二甲酸和乙酸镁交替浸渍层层组装法可以增强Mg-MOF-74与氧化铝基体之间的附着效果,提高晶体薄膜的致密性与连续性,实验发现4次交替浸渍层层组装预置晶种可以制备出具有分子筛分性能的Mg-MOF-74晶体膜,单组分气体渗透测试表明其H2/CO2的理想选择性可以达到8.96,高于其努森扩散选择性。XRD测试表明该晶体膜的特征衍射峰与文献报告的粉末MOF-74完全一致,表明Mg-MOF-74晶粒以无取向形式生长于氧化铝载体表面。SEM表征表明Mg-MOF-74晶粒呈麦粒状微观外形,其BET比表面积可以达到1182 m2·g-1。 Continuous and dense Mg-MOF-74 membranes were prepared through a combined layer-by-layer seeding assembling and secondary growth method based on 2, 5-dihydroxybenzoic acid and magnesium acetate solution. The adhesion between Mg-MOF-74 crystals andα-Al2O3 support could be considerably improved by the alternate immersion assembling of 2, 5-dihydroxybenzoic acid and magnesium acetate solution. Compared with the in-situ crystallization technique, Mg-MOF-74 membranes synthesized by four-cycle layer-by-layer method exhibited improved molecule-sieving properties due to optimized membrane continuity and density. Single gas test indicated that the best Mg-MOF-74 membrane had H2/CO2 ideal selectivity as high as 8.96, higher than its Knudsen diffusion selectivity. XRD measurement proved that the XRD patterns of Mg-MOF-74 membranes were consistent with those of powdered Mg-MOF-74 from published papers, which implied that our membranes were composed of randomly oriented MOF-74 crystals. SEM characterization showed that the MOF-74 crystals possessed wheat-shaped morphology and specific BET surface area as high as 1182 m2·g^-1.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第1期478-485,共8页 CIESC Journal
基金 国家自然科学基金项目(21201096) 辽宁省教育厅资助项目(L2010242) 中国科学院煤制乙二醇及相关技术重点实验室资助项目~~
关键词 微观结构 晶化 Mg-MOF-74晶体膜 层层组装 membrane microstructure crystallization Mg-MOF-74 membrane layer-by-layer assembling
  • 相关文献

参考文献19

  • 1Kumar P, Paul A K, Deep A. Sensitive chemosensing of nitro group containing organophosphate pesticides with MOF-5 [J]. Micro. Meso. Mater., 2014, 195:60-66.
  • 2Calleja G Sanz R, Orcajo G, Briones D, Leo P, Martinez F. Copper-based MOF-74 material as effective acid catalyst in Friedelrafts acylation of anisole [J]. Catal. Today, 2014, 227: 130-137.
  • 3Yang J-M, Liu Q, Sun W-Y. Shape and size control and gas adsorption of Ni(11)-doped MOF-5 nano/microcrystals [J]. Micro.. Meso. Mater., 2014,190:26-31.
  • 4Bazer-Bachi D, Assi6 L, Lecocq V, Harbuzaru B, Falk V. Towards industrial use of metal-organic framework: impact of shaping on the MOF properties [J]. Powder Technol., 2014, 255:52-59.
  • 5Xu Y, Wen Y, Zhu W, Wu Y N, Lin C, Li G Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives [J]. Mater. Lett., 2012, 87:20-23.
  • 6Dipendu Saha.Hydrogen Adsorption on Metal-Organic Framework MOF-177[J].Tsinghua Science and Technology,2010,15(4):363-376. 被引量:5
  • 7Guo M, Cai H-L, Xiong R-G Ferroelectric metal organic framework (MOF) [J]. Inorg. Chem. Commun., 2010, 13(12): 1590-1598.
  • 8Bux H, Chmelik C, Krishna R, Caro J. Ethene/ethane separation by the MOF membrane Z1F-8: molecular correlation of permeation, adsorption, diffusion [J]. J..Membr. Sci., 2011,369(1/2): 284-289.
  • 9赵祯霞,李忠,林跃生.预置纳米MOF-5晶种二次生长法合成MOF-5膜[J].化工学报,2011,62(2):507-514. 被引量:11
  • 10Choi J S, Son W J, Kim J, Ahn W S. Metal-organic framework MOF-5 prepared by microwave heating: factors to be considered [J]. Micro. Mesa. Mater., 2008, 116(1/2/3): 727-731.

二级参考文献121

  • 1张雄福,刘海鸥,王安杰,王金渠.沸石晶种层形成的影响因素及其对Silicalite-1型沸石膜生长的影响[J].高校化学工程学报,2006,20(4):520-526. 被引量:8
  • 2Frost H, Snurr R Q. Design requirements for metal-organic frameworks as hydrogen storage materials. J. Phys. Chem. C, 2007, 111:18 794-18 803.
  • 3Walton, Snurr R Q. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. J. Am. Chem. Soc., 2007, 129: 8552-8556.
  • 4Amirjalayer S, Tafipolsky M, Schmid R. Molecular dynamics simulation of benzene diffusion in MOF-5: Importance of lattice dynamics. Angew. Chem. lntl. Ed., 2007, 46 463-466.
  • 5Farrusseng D, Daniel C, Gaudillre C, et al. Heats of adsorption for seven gases in three metal-organic frameworks Systematic comparison of experiment and simulation. Langmuir, 2009, 25(13): 7383-7388.
  • 6Liu B, Yang Q, Xue C, et al. Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks. Phys. Chem. Chem. Phys., 2008, 10: 3244-3249.
  • 7Klontzas E, Mavrandonakis A, Tylianakis E, et al. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. Nano Lett., 2008, 8: 1572-1576.
  • 8Han S S, Soo S, Goddard W A, III. High H2 storage of hexagonal metal-organic frameworks. Journal of Physical Chemistry C, 2008, 112:13 431-13 436.
  • 9Frost H, Diiren T, Snurr R Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J. Phys. Chem. B, 2006, 110: 9565-9570.
  • 10Huang B L, McGaughey A J H, Kaviany M. Thermal conductivity of metal-organic framework 5 (MOF-5): Part I.Molecular dynamics simulations. Intl. d. Heat Mass Transfer, 2007, 3: 393-404.

共引文献14

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部