期刊文献+

WSN中一种基于RSSI的移动节点改进定位算法 被引量:16

An improved localization algorithm based on RSSI in WSN
下载PDF
导出
摘要 移动无线传感器网络的节点定位算法中,基于RSSI的MCL定位算法利用接收信号强度的对数正态模型对定位的预测和滤波过程进行了改进,改善了定位性能,但是仍存在计算量较大、功耗较大等不足。因为物体的运动状态不会发生突变,因而可以利用前几个时刻的轨迹,预测当前时刻的运动参数。采用Hermite插值法,对当前时刻的运动轨迹作了很好的预测。仿真结果表明,该算法与传统的算法相比,减小了采样范围,提高了采样准确率,从而提高定位精度,降低功耗。 Among the localization algorithms for mobile wireless sensor network nodes, the RSSI-based MCL location algorithm using the received signal strength of the lognormal model improved prediction and filtering process of localization, and also im- proved positioning performance. However, there are still large amount of calculation and large power consumption, etc. Because the movement state of the object is not a mutation, it is possible to use the first few moments of the trajectory and the motion parame- ters of the current time could be predicted. This paper uses a Helrmite interpolation method, the trajectory of the cut'rent moment made a good prediction. Simulation results show that compared with the conventional the algorithm, the sampling range is reduced, the sumpling accuracy is improved,and then the localization accurary is improved,the power consumption of the nodes is reduced.
出处 《电子技术应用》 北大核心 2015年第1期86-89,共4页 Application of Electronic Technique
基金 国家自然科学基金项目(61171190)
关键词 无线传感器网络 节点定位 埃尔米特插值 蒙特卡洛 信号接收强度指标 wireless sensor network localization hermite monte carlo algorithm received signal strength indication
  • 相关文献

参考文献8

  • 1Hu Lingxuan,EVANS D.Localization for mobile sensor networks[C].Proc of the 10th Annual International Conference on Mobile Computing and Networking(Mobicom04),Philadelphia,Pennsylvania:USA,2004:45-57.
  • 2BAGGIO A,LANGENDOER K.Monte carlo iocalization for mobile wireless sensor networks[C].Proceedings of the 2nd International Conference on Mobile Ad-hoc and Sensor Networks(MSN′06),Dec 13-15,2006,Hong Kong,China.LNCS 4325.Berlin,Germany:Springer-Verlag,2006:718-733.
  • 3RUDAFSHANI M,DATTA S.Localization in wireless sensor networks[C].Information Processing in Sensor Net works,2007.IPSN 2007.6th International Symposium on,pp.51,60,25-27 April 2007.
  • 4Yi Jiyoung,Won Yang Sung,Cha Hojung.Multi-hop-based Monte Carlo Localization for Mobile Sensor Networks[C].Proceedings of The 4th Annual IEEE Communications Society Conference on Sensor,Mesh and Ad Hoc Communi cations and Networks,San Diego,California,USA,2007:163-171.
  • 5DIL B,DULMAN S,HAVINGA P.Range-based localization in mobile sensor networks[J].Wireless Sensor Networks,2006:164-179.
  • 6WANG W D,ZHU Q X.RSS-based Monte Carlo localization for mobile sensor networks[J].Communications,IET,2008,2(5):673-681.
  • 7MARTINS M H T,CHEN H,SEZAKI K.OTMCL:Orientation tracking-based Monte Carlo localization for mobile sensor networks[C].Proceedings of the 6thInternational Conference on Networked Sensing Systems(INSS),2009:1-8.
  • 8李伟,丁勇,于春娣,薛琳强.一种基于RSSI的改进蒙特卡罗定位算法[J].计算机应用与软件,2013,30(12):280-283. 被引量:2

二级参考文献11

  • 1Hu L, Evans D. Localization for mobile sensor networks [ C ]//Pro- ceedings of MobiCom'04, Philadelphia, Pennsylvania, USA, 2004 : 45 -57.
  • 2Baggio A, Langendoen K. Monte Carlo localization for mobile wireless sensor networks [J]. Ad Hoc Networks, 2008, 6(5) :718-733.
  • 3Rudafshani M, Datta S. Localization in wireless sensor networks[ C]// The 6th International Symposium on IPSN, Cambridge, MA, USA, 2007:51 -60.
  • 4Stevens-Navarro E, Vivekanandan V, Wong V W S. Dual and mixture Monte Carlo localization algorithms for mobile wireless sensor networks [ C ]//IEEE Wireless Communications and Networking Conference, Hong Kong, China, 2007:4027 -4031.
  • 5Yi J, Yang S, Cha H. Multi-hop-based Monte Carlo Localization for Mobile Sensor Networks [ C ]//Proceedings of IEEE SECON'07, San Diego, California, USA, 2007:162-171.
  • 6Dil B, Dulman S, Havinga P. Range-based localization in mobile sen- sor networks [ C ]//Proceedings of EWSN'06, Zurich, Switzerland, 2006:164 - 179.
  • 7Wang W D, Zhu Q X. RSS-based Monte Carlo localization for mobile sensor networks [J]. IET Communications, 2008, 2(5):673-681.
  • 8Patwari N, Hero A. O, Perkins M, et al. Relative location estimation in wireless sensor networks [ J ]. IEEE Trans. Signal Process. 2003, 51 (8) :2137 -2148.
  • 9Rappaport T. Wireless communications : principles and practice [ M ]. Prentice-Hall: New Jersey, 2002.
  • 10Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistics and Computing, 2000, 10 (3): 197-208.

共引文献1

同被引文献105

引证文献16

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部