期刊文献+

植物与植食性昆虫防御与反防御的三个层次 被引量:30

Three levels of defense and anti-defense responses between host plants and herbivorous insects
原文传递
导出
摘要 在植物与植食性昆虫长期的进化过程中,双方形成了一系列的防御与反防御策略。本文将这些策略归为3个层次:第一层次起始于植物对植食性昆虫相关分子模式的识别,并由此激活植食性昆虫分子模式相关的免疫反应。这种免疫反应对于不能产生效应子的植食性昆虫种群是有效的;第二层次是一些植食性昆虫种群可以通过释放特异性效应子抑制植物产生的植食性昆虫分子模式相关的免疫反应,从而在植物上正常生长与繁衍;第三层次是一些植物基因型可以通过特异抗性基因识别植食性昆虫的效应子,进而激活效应子诱导的免疫反应,表现出特异的抗虫性。深入揭示植物与植食性昆虫间的这种分子互作机制,不仅在理论上有助于理解昆虫与植物的协同进化机制,而且在实践上可为作物抗性品种的培育提供重要的技术指导。 In the long-term process of evolution, both host plants and herbivorous insects form a series of complex defense and anti-defense strategies. In this paper, these strategies are classified into three levels. First, host plants perceive herbivore-associated molecular patterns (HAMPs) and then lead to HAMP-triggered immunity (HTI). This defense is effective against some popula- tions of the herbivore species that cannot secrete effectors. Second, some populations of the herbi- vore species secrete special effectors to suppress HTI in plants, thereby resulting in herbivore col- onization. Third, the effectors of certain populations of the herbivore species could be recognized by resistance genes of host plants, leading to effective effector-triggered immunity and resistance to the herbivore. The elucidation of the mechanisms underlying molecular interactions between host plants and herbivores will not only deepen the understanding of the co-evolution between plants and herbivores, but also provide important technical guidance for the breeding of resistant crop cuhivars.
出处 《生态学杂志》 CAS CSCD 北大核心 2015年第1期256-262,共7页 Chinese Journal of Ecology
基金 国家重点基础研究发展计划项目(2010CB126200)资助
关键词 植物防御反应 昆虫取食行为 昆虫唾液 效应子 plant defense response insect feeding behavior insect saliva effector.
  • 相关文献

参考文献61

  • 1娄永根,程家安.植物的诱导抗虫性[J].昆虫学报,1997,40(3):320-331. 被引量:56
  • 2汤德良.植物抗虫的次生代谢物质[J].世界农业,1999(3):32-33. 被引量:11
  • 3Agrawal AA. 1998. Induced responses to herbivory and increased plant performance. Science,279: 1201-1202.
  • 4Agrawal AA. 1999. Induced responses to herbivory in wild radish: Effects on several herbivores and plant fitness. Ecology, 80: 1713-1723.
  • 5Albom HT, Hansen TV, Jones TH, et al. 2007. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 104; 12976-12981.
  • 6Albom HT, Turlings TCJ, Jones TH, et al. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science, 276: 945-949.
  • 7Azevedo C, Betsuyaku S, Peart J, et al. 2006. Role of SGT1 in resistance protein accumulation in plant immunity. The EMBO Journal,25: 2007-2016.
  • 8Barbosa P, Gross P, Kemper J. 1991. Influence of plant allelo-chemicals on the tobacco hornworm and its parasitoid, Cotesia congregata. Ecology, 72: 1567-1575.
  • 9Bos JI, Prince D, Pitino M, et al. 2010. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae ( green peach aphid) . PLoS Genetics, 6: el001216.
  • 10Bostock RM. 2005. Signal crosstalk and induced resistance : Straddling the line between cost and benefit. Annual Review of Phytopathology, 43: 545-580.

二级参考文献5

共引文献65

同被引文献432

引证文献30

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部