期刊文献+

具边界反馈时滞的粘弹方程的能量衰减(英文) 被引量:1

General Decay of the Energy for a Viscoelastic Wave Equation with a Delay Term in the Boundary Feedback
下载PDF
导出
摘要 考虑如下具边界反馈时滞的粘弹方程ut(x,t)-Δu(x,t)+∫0tg(t-s)Δu(x,s)ds=0,x∈Ω,t>0,u(x,t)=0,x∈Γ0,t>0,?u /?v=∫0tg(t-s)/vu(s)ds-μ1ut(x,t)-μ2ut(x,t-τ),x∈Γ1,t>0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,ut(x,t-τ)=f0(x,t-τ),x∈Ω,0<t<τ,其中Ω∈Rn(n≥1)是具C2类边界Ω的有界域.此外,g是所谓的"记忆核",μ1,μ2是两个实数,τ为时滞.在假设|μ2|<μ1下,通过构造合适的Lyapunov函数,证明上述问题能量的一般衰减性,使得指数型衰减和多项式衰减仅仅是其特殊情况. We consider a viscoelastic wave equation with a delay term in the boundary feedback; namely, we study the following problem ut(x,t)-Δu(x,t)+∫0tg(t-s)Δu(x,s)ds=0,x∈Ω,t〉0,u(x,t)=0,x∈Γ0,t〉0,?u /?v=∫0tg(t-s)/vu(s)ds-μ1ut(x,t)-μ2ut(x,t-τ),x∈Γ1,t〉0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,ut(x,t-τ)=f0(x,t-τ),x∈Ω,0〈t〈τ,whereΩ∈Rn(n≥1) be a regular and bounded domain with a boundary ЭΩ of class C2. Moreover,g is so-called "memory kernel",μ1,μ2 are two real coefficients which are not necessarily positive, and r represents the time delay. Under the restriction |μ2|〈μ1 , general decay results of the energy of the concerned problem are obtained via an appropriate Lyapunov functional. And the exponential and polynomial types of decay are only special cases.
作者 阳志锋
出处 《应用数学》 CSCD 北大核心 2015年第1期1-9,共9页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of Hunan Province(14JJ7070) the Key Built Disciplines of Hunan Province-Operations Research and Control Theory (Hengyang Normal University,2011)
关键词 粘弹性波动方程 能量衰减 时滞 边界反馈 Viscoelastic wave equation Energy decay Time-delay Boundary feed-back
  • 相关文献

参考文献16

  • 1Nasser-eddine Tatar.Arbitrary decay in linear viscoelasticity[J].J.Math.Phys.,2011,52:01350201-01350212.
  • 2Mustafa M I,Messaoudi S A.General stability result for viscoelastic wave equations[J],J.Math.Phys.,2012,53:05370201-05370214.
  • 3Cavalcanti M M,Domingos Cavalcanti V N,Soriano J A.Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping[J].E.J.Differ.Int.Equ.,2002,44:1-14.
  • 4Berrimi S,Messaoudi S A.Existence and decay of solutions of a viscoelastic equation with a nonlinear source[J].Nonl.Anal.,2006,64:2314-2331.
  • 5Alaban-Boussouira F.Cannarsa P,Sforza D.Decay estimates for second order evolution equations with memory[J].J,Fanct,Anal.,2008,254(5);1342-1372.
  • 6Cavalcanti M M,Oquendo H P.Frictional versus viscoelastic damping in a semilinear wave equation[J].SIAM J.Control Optim.,2003,42(4):1310-1324.
  • 7Hale Jf Verduyn Lunel S.Introduction to functional differential equations[G]//Applied Mathematical Sciences,Vol.99.New York:Springer-Verlag,1993.
  • 8Datko R,Lagnese L,Polis M P.An example on the effect of time delays in boundary feedback stabilization of wave equadons[J].SIAM J.Control Optim.,1986,24:152-156.
  • 9Datko R.Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[J],SIAM J.Control Optim.,1988,26:687-713.
  • 10Datko R.Two examples of ill-posedness with respect to time delays revisited methods[J].IEEE Trans.Automat.Control,1997,42:511-515.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部