摘要
考虑如下具边界反馈时滞的粘弹方程ut(x,t)-Δu(x,t)+∫0tg(t-s)Δu(x,s)ds=0,x∈Ω,t>0,u(x,t)=0,x∈Γ0,t>0,?u /?v=∫0tg(t-s)/vu(s)ds-μ1ut(x,t)-μ2ut(x,t-τ),x∈Γ1,t>0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,ut(x,t-τ)=f0(x,t-τ),x∈Ω,0<t<τ,其中Ω∈Rn(n≥1)是具C2类边界Ω的有界域.此外,g是所谓的"记忆核",μ1,μ2是两个实数,τ为时滞.在假设|μ2|<μ1下,通过构造合适的Lyapunov函数,证明上述问题能量的一般衰减性,使得指数型衰减和多项式衰减仅仅是其特殊情况.
We consider a viscoelastic wave equation with a delay term in the boundary feedback; namely, we study the following problem ut(x,t)-Δu(x,t)+∫0tg(t-s)Δu(x,s)ds=0,x∈Ω,t〉0,u(x,t)=0,x∈Γ0,t〉0,?u /?v=∫0tg(t-s)/vu(s)ds-μ1ut(x,t)-μ2ut(x,t-τ),x∈Γ1,t〉0,u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω,ut(x,t-τ)=f0(x,t-τ),x∈Ω,0〈t〈τ,whereΩ∈Rn(n≥1) be a regular and bounded domain with a boundary ЭΩ of class C2. Moreover,g is so-called "memory kernel",μ1,μ2 are two real coefficients which are not necessarily positive, and r represents the time delay. Under the restriction |μ2|〈μ1 , general decay results of the energy of the concerned problem are obtained via an appropriate Lyapunov functional. And the exponential and polynomial types of decay are only special cases.
出处
《应用数学》
CSCD
北大核心
2015年第1期1-9,共9页
Mathematica Applicata
基金
Supported by the Natural Science Foundation of Hunan Province(14JJ7070)
the Key Built Disciplines of Hunan Province-Operations Research and Control Theory (Hengyang Normal University,2011)
关键词
粘弹性波动方程
能量衰减
时滞
边界反馈
Viscoelastic wave equation
Energy decay
Time-delay
Boundary feed-back