期刊文献+

脉冲中立泛函微分方程概周期解的存在性(英文)

Almost Periodic Solutions for Impulsive Neutral Functional Differential Systems
下载PDF
导出
摘要 本文讨论一类脉冲中立型泛函微分方程的概周期解问题.利用Banach压缩映射原理和算子半群理论得到其概周期解的存在唯一性定理. In this paper, by means of Banach contraction mapping principle and semigroup theory, some sufficient conditions for the existence and uniqueness of almost periodic solutions for impulsive neutral differential system are obtained.
作者 王奇 陆地成
出处 《应用数学》 CSCD 北大核心 2015年第1期41-46,共6页 Mathematica Applicata
基金 Supported by the Key Foundation of Anhui Education Bureau(KJ2012A019,KJ2013A028) the Anhui Provincial NSF(1408085MA02,1208085MA13,1308085MA01,1308085QA15) the Research Fund for the Doctoral Program of Higher Education(20103401120002,20113401110001) the 211 Project of Anhui University(02303129,02303303-33030011,0230390239020011,KYXL2012004,XJYJXKC04) the NNSF of China(11271371,11301004)
关键词 脉冲中立泛函微分方程 压缩映射原理 概周期解 存在唯一性 Impulsive neutral differential system Contraction mapping principle Al-most periodic solution Existence and uniqueness
  • 相关文献

参考文献8

  • 1Samoilenko A M,Perestyuk N A.Differential Equations with Impulse Effect[M].Singapore:World Scientific ,1995.
  • 2Bainov D 0,Simeonov P S.Impulsive Differential Equations:Periodic Solutions and Applications[M].Harlow:Longman,1993.
  • 3Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore,New Jersey,London:World Scientific,1989.
  • 4ZHANG Chuanyi.Almost Periodic Type Functions and Ergodicity[M],New York:Science Press/Klawer Academic Publishers,2003.
  • 5Fink A M.Almost periodic differential equations[G]//Lecture Notes in Mathematics,No.377.Berlin,Heidelberg,New York:Springer-Verlag,1974.
  • 6Toka Diagana.Pseudo Almost Periodic Functions in Banach Spaces[M].New York:Nova Publishers,2007.
  • 7Abbas S,Bahuguna D.Almost periodic solutions of neutral functional differential equations[J].Comput.Math.Appli.,2008,55:2593-2601.
  • 8Mohammad N Islam,Youssef N Raffoul.Periodic solutions of neutral nonlinear system of differential e-quations with functional delay[J].J.Math.Anal.Appl.,2007,331:1175-1186.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部