期刊文献+

面向动态隐患目标的车联网主动安全模型及系统实现 被引量:2

A Dynamic-danger-vehicle-oriented Active Safety Model and System Implementation for Vehicles of Internet
下载PDF
导出
摘要 对交通中的各类运动隐患目标进行主动监控,并将其与周边关联移动车辆的状态进行实时协同分析,为周边关联车辆推送动态隐患信息,是汽车物联网主动安全服务的重要目标之一.提出一种在交管车联网环境下,针对高危险及高路权车辆所构成的动态隐患目标的主动安全模型,详细阐述了相关建模过程、数据结构和主动协同算法;作为国家"北斗-羲和系统"的重点研究成果,结合中山市交管车联网平台进行了模型验证,并给出了数据分析结果.研究表明,本文的方法能够克服当前车联网仅依靠地理围栏等技术无法处理动态隐患目标的缺陷,能够支持大规模动态隐患目标的跟踪、查询及动态隐患域内的主动安全服务. An important goal of intemet of vehicle active safety service is to notify vehicles the potential traffic danger around them. The goal could be achieve by actively monitoring various kinds of danger vehicles,and conducting real-time collaborative analysis between danger ve- hicles and the surrounding vehicles which will be impacted by them. This paper proposed an active safety model,whose targets are high-risk and high-road-weight vehicles,for internet of vehicles under traffic management environment. We presented the modeling process,data struc- tures ,and an active collaboration algorithm in detail. Later, we validated the model and gave the analysis result based on the vehicles of inter- net traffic management platform of Sun Yat-Sen City,a major research outcome from national "Beidou&Xihe" system. Experiments showed that our method could overcome the shortage of handling dynamic vehicles which results from only relying on geo-fencing technologies. The method could support large scale,dynamic danger vehicles tracking,querying,and active safety services.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第1期22-26,共5页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划基金项目(2013AA12A206 2013AA12A204)资助 国家自然科学基金项目(41104010 91120002)资助 高等学校学科创新引智计划项目(B07037)资助
关键词 动态隐患控制 主动安全 汽车物联网 北斗导航 位置服务 dynamic danger control vehicle active safety vehicles of intemet beidou navigation LBS
  • 相关文献

参考文献17

  • 1Huang C L,Fallah Y P,Sengupta R,et al. Intervehicle transmission ratecontrol for cooperative active safety system[ J ]. Intelligent Transporta-tion Systems,IEEE Transactions on,2011,12(3) :645-658.
  • 2Traffic Management Bureau of Ministry of Public Security. Statisticsof road traffic accidents of PRC[ D]. Beijing: Traffic ManagementBureau of Ministry of Public Security ,2013.
  • 3Nait-Sidi-Moh A, Ait-Cheik-Bihi W,Bakhouya M,et al. On the useof location-based services and geofencing concepts for safety androad transport efficiency [ M ]. Trends in Mobile Web InformationSystems, Springer International Publishing, 2013 : 135 -144.
  • 4Huang C L, Fallah Y P, Sengupta R, et al. Adaptive intervehiclecommunication control for cooperative safety systems [ J ]. Net-work,IEEE,2010,24(l) :6-13.
  • 5Demiryurek U, Banaei-Kashani F, Shahabi C. Efficient continuousnearest neighbor query in spatial networks using euclidean restric-tion [M ]. Advances in Spatial and Temporal Databases, SpringerBerlin Heidelberg ,2009:2543.
  • 6赵亮,陈荦,景宁,廖巍.道路网中的移动对象连续K近邻查询[J].计算机学报,2010,33(8):1396-1404. 被引量:14
  • 7赵亮,景宁,陈荦,廖巍,钟志农.面向多核多线程的移动对象连续K近邻查询[J].软件学报,2011,22(8):1805-1815. 被引量:11
  • 8Fan P, Li G, Yuan L. Continuous K-Nearest neighbor processingbased on speed and direction of moving objects in a road network[J]. Telecommunication Systems,2014,55(3) :403-419.
  • 9Li G’Fan P,Li Y, et al. An efficient technique for continuous K-Nearest neighbor query processing on moving objects in a road net-work [J ]. Computer and Information Technology ( CIT) , 2010IEEE 10th International Conference on,2010:627-634.
  • 10Sidlauskas D,Saltenis S,Jensen C S. Processing of extreme moving-object update and query workloads in main memory [ J ]. The VLDBJoumal,2014;l-25.

二级参考文献23

  • 1Wolfson Ouri.Moving objects information management:The database challenge//Proceedings of the International Workshop on Next Generation Information Technologies and Systems.Caesarea,Israel,2002:75-89.
  • 2Xiong Xiaopeng,Mohamed F M,Walid G A.SEA-CNN:Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases//Proceedings of the International Conference on Data Engineering.Tokyo,Japan,2005:643-654.
  • 3Yu Xiaohui,Ken Q P,Nick Koudas.Mointoring k-nearest neighbor queries over moving objects//Proceedings of the International Conference on Data Engineering.Tokyo,Japan,2005:631-642.
  • 4Mouratidis K,Hadjieleftheriou M,Papadias D.Conceptual partitioning:An efficient method for continuous nearest neighbor monitoring//Proceedings of the International Conference on Management of Data.Baltimore,USA,2005:634-645.
  • 5Hu Haibo,Xu Jianliang,Dik L L.A generic framework for monitoring continuous spatial queries over moving objects//Proceedings of the International Conference on Management of Data.Baltimore,USA,2005:479-490.
  • 6Hsueh Y L,Zimmermann R,Wang Haojun et al.Partition-based lazy updates for continuous queries over moving objects//Proceedings of the International Symposium on Advances in Geographic Information Systems.Seattle,USA,2007.
  • 7Mouratidis K,Yiu M L,Papadias D et al.Continuous nearest neighbor monitoring in road networks//Proceedings of the International Conference on Very Large Data Bases.Seoul,Korea,2006:43-54.
  • 8Demiryurek U,Banaei K F,Shahabi C.Efficient continuous nearest neighbor query in spatial networks using euclidean restriction//Proceedings of the International Symposium on Spatial and Temporal Database.Aalborg,Denmark,2009:25-43.
  • 9Papadias D,Zhang Jun,Mamoulis N et al.Query processing in spatial network databases//Proceedings of the International Conference on Very Large Data Bases.Berlin,Germany,2003:802-813.
  • 10Hoel E G,Samet H.Efficient processing of spatial queries in line segment databases//Proceedings of the International Symposium on Large Spatial Databases.Zurich,Switzerland,1991.

共引文献20

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部