期刊文献+

基于鱼眼视频图像的人群人数估计算法的研究 被引量:1

Research on Estimation Algorithm of Crowd Counting Based on Fisheye Video Image
下载PDF
导出
摘要 对于一些公共场所,人数的统计是安全领域的重要问题。为了获得大视角的监控视频,以得到更多有用的视频信息,同时兼顾实时性和监控成本,本文使用鱼眼镜头对人群进行监控。为了使所有视场范围内景物能够在有限大小的成像面上成像,设计者人为的引入桶形畸变,而且由于实际场景中的景物通过鱼眼镜头后,会产生权重不等的像素点,本文针对鱼眼图像透视加权模型,采用加权特征提取的方法,提取鱼眼图像中人群目标的特征,包括加权面积、加权周长、加权KLT角点数以及加权边缘点数这4个特征,并使用多元线性回归法估计出了人群中的人数,取得了良好的效果。 In some public places,the statistics about the number of people is an important problem in security field.In order to receive large perspective,to get more useful video information,considering real-time and monitoring costs,this paper used a fisheye lens to monitor population. In order to make all the field of view imaging features image in the finite size of the surface,the designer introduced the barrel distortion artificially. At the same time,because the actual scenery through a fisheye lens,will produce the pixels with different weight,in the process of crowd counting based on fisheye video image,four features including weighted area,weighted edge density,weighted KLT corner number and weighted contour perimeter are extracted based on the perspective weight model of fisheye camera,and polynary linear regression combined with these features is applied for crowd counting in fisheye images.The experimental results are quite good.
作者 韩迎辉 伏林
出处 《电子器件》 CAS 北大核心 2014年第6期1111-1115,共5页 Chinese Journal of Electron Devices
关键词 鱼眼视频图像 人数估计 透视加权模型 多元线性回归 fisheye video image counting perspective weight model polynary linear regression
  • 相关文献

参考文献7

  • 1胡学敏.基于视频图像的密集人群智能监控关键技术的研究[D].武汉:武汉大学,2012.
  • 2万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 3Chow W T S, Cho S Y. Industrial Neural Vision System for Under- ground Railway Station Platform Surveillance[ J]. Advanced Engi- neering Informatics. 2002,16( 1 ) :73-83.
  • 4Huang C, Ai H Z, LI Yuan, et al. High-Performance Rotation In- variant Multiview Face Detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007,29 ( 9 ) : 1112- 1123.
  • 5Anthony C Davies, Yin J H, Velastin S A. Crowd Monitoring Using Image Processing[ J]. Electronic and Communications Engineering Journal, 1995,7( 1 ) :37-47.
  • 6Fruin J J. Crowd Dynamics and the Design and Management of Public Place [ C ]//J Pauls (Ed.) , Int. Conf. on Building Use and Safety Technology. National Institute of Building Scenes, Washington DC, 1985 : 110-11.
  • 7Rahmalan H,Nixon M S,Carter J N. On Crowd Density Estimation for Surveillance [ J ]. The Institution of Engineering and Technology Conference on Crime and Security ,2006:540-545.

二级参考文献20

  • 1Alexei A Efros, Alexander C Berg, Greg Mori, Jitendra Malik.Recognizing Action at a Distance [ C ]. International Conference on Computer Vision (ICCV) , 2003.
  • 2C Wen, A Azarbayejani, T Darrell and A Pentland. Pfinder:Real -Time Tracking of the Human Body. [J]. IEEE Trans.Pattern Analysis and Machine Intelligence, 1997, 19(7).
  • 3W E L Grimson, C Stauffer, R Romano and L Lee. Using Adaptive Tracking to Classify and Monitor Activities in a Site[C]. Proc. IEEE conf. Computer Vision and Pattern Recognition(CVPR) , 1998.
  • 4Robert T Collins, Alan J Lipton, Takeo Kanade. Special Section on Video Surveillance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, August 2000, 22(8) : 745- 746.
  • 5Paul Viola, Michael J Jones, Daniel Snow. Detecting Pedestrians Using Patterns of Motion and Appearance [C].International Conference on Computer Vision (ICCV) , 2003.
  • 6Eric Hayman, Jan - Olof Eklundh. Statistical Background Subtraction for a Mobile Observer[ C ]. International Conference on Computer Vision (ICCV), 2003.
  • 7J Rymal, J Renno, D Greenhill, J Orwell, G A Jones.Adaptive Eigen - backgrounds for Detection[C]. The IEEE International Conference on Image Processing (ICIP) ,200d.
  • 8P Spagnolo, M Leo, T D' Orazio, A Distante. Robust Moving Objects Segmentation by Background Subtraction[C]. The International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS) ,2004.
  • 9Ismail Haritaoglu, David Harwood, Larry S Davis. W4: Real -Time Surveillance of People and Their Activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(8) :809 - 830.
  • 10Ahmed Elgammal, David Harwood, Larry Davis. Non -parametric Model for Background Subtraction [ C]. European Conference on Computer Vision (ECCV) ,2000.

共引文献120

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部