期刊文献+

基于ARM的说话人识别系统的研究与实现 被引量:2

Speaker Recognition Based on ARM
下载PDF
导出
摘要 提出了一种基于压缩感知(CS)的说话人识别算法以及在ARM系统中的实现,首先,介绍压缩感知理论框架,提出说话人识别可以与压缩感知理论相结合的依据;其次,提出基于压缩感知的说话人识别算法的基本方法,即建立说话人语音特征数据库和基追踪匹配得到最大均值系数,其中,语音特征向量由GMM均值超向量核算法得到,大量实验数据表明,该方法一定程度上提高了识别率,并且在说话人集合较大的情况下识别效果较好。 To improve the rates of speaker recognition,a method based on the compressed sensing( CS) is proposed.First,the frame of compressed sensing theory is introduced to analyzing the premise of combining the compressed sensing theory with the speaker recognition. Then the major algorithm of speaker recognition based on compressed sensing is advanced,that is the establishment of speakers' characteristic database and matrix trace to obtain the maximum average coefficients matching. Oceans of experimental data indicate that this method has strong recognition ability and the performance is good when the collection of speakers is huge.
出处 《电子器件》 CAS 北大核心 2014年第6期1151-1154,共4页 Chinese Journal of Electron Devices
关键词 压缩感知 说话人识别 基追踪 高斯混合模型 compressed sensing speaker recognition matrix trace Gaussian mixture model
  • 相关文献

参考文献11

  • 1Douglas A Reynolds. Speaker Identification and Verification Using Gaussian Mixture Speaker Models [ J ]. Speech Communication, 1995 : 91-108.
  • 2Pandey P C, Bhandorkar S M. Enhancement of Alaryngeal Speech Using Spectral Subtraction[ C ]//14th International Conference on DSP 2002. 2002:591-594.
  • 3Soon I Y, Koh S N. Speech Enhancement Using 2-D Fourier Trans- form[ J ]. IEEE Transactions on Speech and Audio Processing, 2003,11(6) :717-724.
  • 4Tadj C, Gabrea M. Towards Robustness in Speaker Verification: Enhancement and Adaptation [ C ]//MWSCAS- 2002. 2002 : 320- 323.
  • 5Markov K, Nakagawa S. Text-Independent Speaker Recognition System Using Frame Level Likelihood Processing [ J ]. Technical Report of IEICE, 1996,96(17) :37-44.
  • 6Liu C S, Wang H C. Speaker Verification Using Normalization Log- Likelihood Score[J]. IEEE Trans Speech and Audio Preeessing, 1980,4(3) :56-60.
  • 7Zhong Lin,Ratik Goubran. Musical Noise Reduction in Speech Using Two-Dimensional Spectrogram Enhancement [ C ]//Proceedings of HAVE 2003. 2003:61-64.
  • 8Matsui T, Furui S. Concatenated Phoneme Models for Text Variable Speaker Recognition [ C ]//Proceeding of ICASSP'93. 1993:391-394.
  • 9D0noho D. Compressed Sensing Theory[ J]. 2006,IEEE Trans In- form,52(4) :1289-1306.
  • 10Baraniuk R. Compressive Sensing [ J ]. IEEE Signal Processing Magazine ,2007,24( 3 ) : 1092-1099.

同被引文献14

  • 1汪雄良,王正明.基于快速基追踪算法的图像去噪[J].计算机应用,2005,25(10):2356-2358. 被引量:6
  • 2陆基孟,王永刚. 地震勘探原理(第三版). 东营:中国石油大学出版社,2011:355-356.
  • 3Hampson D, Schuelke J S, Quirein J A. Use of multi-attribute transforms to predict log properties from seismic data. Exploration Geophysics, 2001, 66 (1): 220-236.
  • 4Nguyen T, Castagna J. High resolution reflectivity inversion. Journal of Seismic Exploration, 2010, 19 (4),303-320.
  • 5Zhang R, Castagna J. Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics, 2011, 76 (6): R147-R158.
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit: Society for Industrial and Applied Mathematics Review, 2001, 43 (1): 129-159.
  • 7Jiang Lian, Wen Xiao-Tao, Zhou Dong-Hong et al. The constructing of pore structure factor in carbonate rocks and the inversion of reservoir parameters. Applied Geophysics, 2012, 9 (2): 223-232.
  • 8芮国胜,王林,田文飚.一种基于基追踪压缩感知信号重构的改进算法[J].电子测量技术,2010,33(4):38-41. 被引量:23
  • 9蒋炼,文晓涛,贺振华,黄德济.礁滩储层内部孔隙结构模型模拟与孔隙度预测[J].地球物理学报,2011,54(6):1624-1633. 被引量:24
  • 10栾颖,冯晅,刘财,刘洋.波阻抗反演技术的研究现状及发展[J].吉林大学学报(地球科学版),2008,38(S1):94-98. 被引量:28

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部