期刊文献+

ε-近似保内积的某个特定值映射 被引量:1

On Mappings Approximately Preserving a Particular Value of Inner Product
下载PDF
导出
摘要 在复Hilbert空间中给出了近似保内积的某个特定值映射的定义,研究了近似保内积的某个特定值线性映射的性质,应用复Hilbert空间中的平行四边形法则证明了非零近似保内积的某个特定值线性映射是有界且下有界的,推广了近似保正交线性映射的定义和结论。 In complex Hilbert spaces, the definition of mapping approximately preserving a particular value of the inner product is given. Then the properties of linear mapping approximately preserving a particular value of the inner product are studied. Finally, it is proved that the nonzero linear mapping approximately preserving a particular value of the inner product is bounded and bounded below by parallelogram law. The result is a generalization of approximate orthogonality preserving linear mappings.
作者 孔亮
出处 《商洛学院学报》 2014年第6期13-15,共3页 Journal of Shangluo University
基金 商洛学院科研基金项目(14SKY016)
关键词 HILBERT空间 正交 近似正交 特定值映射 Hilbert space orthogonality approximate orthogonality particular value of the inner product
  • 相关文献

参考文献17

  • 1Roberts B D.On the geometry of abstract vector space[J].Tohoku Math J,1934,39:42-59.
  • 2Birkhoff G.Orthogonality in linear metric space[J].Duck Math J,1935,1(2):169-172.
  • 3James R C.Orthogonality in normed linear space[J].Duck Math J,1945,12(2):291-302.
  • 4Chmieliński J.Linear mappings approximately preserving orthogonality[J].J Math Anal Appl,2005,301(1):158-169.
  • 5Chmieliński J.Stability of the orthogonality preserving property in finite-dimensional inner product spaces[J].J Math Anal Appl,2006,318(2):433-443.
  • 6Blanco A,Turns'ek A.On maps that preserve orthogonality in normed spaces[J].Proc Roy Soc Edinburgh Sect A,2006,136(4):709-716.
  • 7Turn s'ek A.On mappings approximately preserving orthogonality[J].J Math Anal Appl,2007,336(1):625-631.
  • 8Chmieliński J.Remarks on orthogonality preserving mappings in normed spaces and some stability problems[J].Banach J Math Anal,2007,1(1):117-124.
  • 9孔亮,曹怀信.保正交映射与正交性方程的稳定性[J].陕西师范大学学报(自然科学版),2008,36(5):10-14. 被引量:10
  • 10Ili s'evic D,Turn s'ek A.Approximately orthogonality preserving mappings on C*-modules[J].J Math Anal Appl,2006,318(2):433-443.

二级参考文献30

  • 1Hyers D H. On the stability of the linear functional equation [J ]. Proceedings of the National Academy of Sciences of United States of America, 1941, 27(4):222-224.
  • 2Rassias T M. On the stability of the linear mapping in Banach spaces [ J ]. Proceedings of the American Mathematical Society, 1978, 72(2) :297-300.
  • 3Baker J. The stability of the cosine equation [J].Proceedings of the American Mathematical Society, 1980, 80(3) :411-416.
  • 4Gajda Z. On stability of additive mappings [J]. International Journal of Mathematics and Mathematical Sciences, 1991, 14(3):431-434.
  • 5Rassias T M, Semerl P. On the behavior of mappings which do not satisfy Hyers-Ulam stability [J]. Proceedings of the American Mathematical Society, 1992, 114(4) :989-993.
  • 6Gavruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings[J]. Journal of Mathematical Analysis and Applications, 1994, 184 (3)431-436.
  • 7Badora R. On approximate ring homomorphisms [J ]. Journal of Mathematical Analysis and Applications, 2002, 276(2) :589-597.
  • 8Czerwik S. Stability of functional equation of Ulam-Hyers-Rassias type[M]. Florida: Hadronic Press, 2003.
  • 9Zhang D H, Cao H X. Stability of group and ring homomorphisms [ J ]. Mathematical Inequalities and Applications, 2006, 9(3):521-528.
  • 10Miura T, Takahasi S, Hirasawa G. Hyers-Ulam- Rassias stability of Jordan homomorphisms on Banaeh algebras[J]. Journal of Inequalities and Applications, 2005, 2005(4) :435-441.

共引文献12

同被引文献13

  • 1张芳娟,吉国兴.B(H)上保正交性的可加映射[J].陕西师范大学学报(自然科学版),2005,33(4):21-25. 被引量:5
  • 2ROBERTS B D.On the geometry of abstract vector space[J].T0hoku Math J,1934,39:42-59.
  • 3BIRKHPFF G.Orthogonality in linear metric space [J]. Duck Math J,1935,1(2):169-172.
  • 4JAMES R C.Orthogonality in normed linear space[J]. Duck Math J,1945,12(2):291-302.
  • 5SAIDI F B.An extension of the notion of orthogonality to Banach spaces [J]. J Math Anal Appl,2002,267(1): 29-47.
  • 6CHMIELII~ISKI J, WOJCIK P.On a p-orthogonality [J].Aequationes Math,2010,80(1):45-55.
  • 7WOJCIK P.Linear mappings preserving p-orthogonality [J].J Math Anal Appl,2012,386(1):171-176.
  • 8CHMIELIlqSKI J. On an e-Birkhoff orthogonality, J Inequal Pure Appl Math,2005,6(3):l-7.
  • 9MOJ~KETC B, TURN~EK &Mapping appreximately preserving orthogonality in normed spaees[J].Nonlinear Anal,2010,73(12):3821-3831.
  • 10CHMIELIfftSKI J, WOJCIK P.Isoseeles-ortho gonality preserving property and its stability[J].Nonlinear Anal, 2010,72(8):1445-1453.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部