摘要
在二维局部保持投影中引入类间结构信息和类标签,得到有监督的二维判别局部保持投影算法,从而提高了特征集的鉴别性。针对算法中参数的选取问题,建立无参数权重矩阵,提出无参数的二维判别局部保持投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。
By introducing between- class scatter constraint and label information into two- dimensional locality preserving projections( 2D- LPP) algorithm, two- dimensional discriminant locality preserving projections(2D-DLPP) has more discriminant power than 2D-LPP. However, 2D-DLPP is confronted with the difficulty of parameter selection, which limits its power on solving recognition problem. To solve this problem, by constructing parameter-less affinity matrix, an algorithm called parameter-less two-dimensional discriminant locality preserving projections(parameter-less 2D-DLPP) is proposed. The simulation results on Yale and ORL face database show that the method in this paper can get higher recognition rate than2D-DLPP, 2D-LPP and 2D-LDA.
出处
《商洛学院学报》
2014年第6期23-27,共5页
Journal of Shangluo University
关键词
人脸识别
特征提取
二维判别局部保持投影
无参数
face recognition
feature extraction
two-dimensional locality preserving projections
parameter-less