期刊文献+

基于改进2D-DLPP算法的人脸识别 被引量:2

Face Recognition Based on Improved 2D-DLPP Algorithm
下载PDF
导出
摘要 在二维局部保持投影中引入类间结构信息和类标签,得到有监督的二维判别局部保持投影算法,从而提高了特征集的鉴别性。针对算法中参数的选取问题,建立无参数权重矩阵,提出无参数的二维判别局部保持投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。 By introducing between- class scatter constraint and label information into two- dimensional locality preserving projections( 2D- LPP) algorithm, two- dimensional discriminant locality preserving projections(2D-DLPP) has more discriminant power than 2D-LPP. However, 2D-DLPP is confronted with the difficulty of parameter selection, which limits its power on solving recognition problem. To solve this problem, by constructing parameter-less affinity matrix, an algorithm called parameter-less two-dimensional discriminant locality preserving projections(parameter-less 2D-DLPP) is proposed. The simulation results on Yale and ORL face database show that the method in this paper can get higher recognition rate than2D-DLPP, 2D-LPP and 2D-LDA.
作者 马家军
出处 《商洛学院学报》 2014年第6期23-27,共5页 Journal of Shangluo University
关键词 人脸识别 特征提取 二维判别局部保持投影 无参数 face recognition feature extraction two-dimensional locality preserving projections parameter-less
  • 相关文献

参考文献3

二级参考文献45

  • 1何国辉,甘俊英.二维主元分析在人脸识别中的应用研究[J].计算机工程与设计,2006,27(24):4667-4669. 被引量:22
  • 2Jain A K,Duin R P W,J C Mao.Statistical pattern recognition: a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 1 ) :4-37.
  • 3Jolliffe I T.Principal component analysis[M].New York: Springer- Verlag, 1986.
  • 4Turk M A, Pentland A P.Face recognition using eigenfaces[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1991:586-591.
  • 5Scholkopf B, Smola A, Muller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computing, 1998, 10(5) : 1299-1319.
  • 6Kirby M, Sirovich L.Application of the Karhunen-Loeve procedure for the characterization of human faces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103-108.
  • 7Beyer K, Goldstein J, Ramakrishnan R, et al.When is "nearest neighbor"meaningful[C]//Proceedings of the 7th International Conference on Database Theory, 1999:217-235.
  • 8Mtiller K R, Mika S, Ratsch G, et al.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks.2001,12(2) : 181-201.
  • 9Zhang D.Palmprint authentication[M].[S.l.]: Kluwer Academic, 2004.
  • 10Turk M, Penfland A. Eigenfaces for Recognition. Journal of Cogni- tive Neuroscience, 1991,3( 1 ) : 71-86.

共引文献24

同被引文献16

  • 1Chellappa R, Wilson C L, Sirohey S.Human and machine recognition of faces:a survey[J].Proceedings of the IEEE,1995,83(5):705-740.
  • 2Sahbi H. Kernel PCA for similarity invariant shape recognition [J]. The Journal of Neurocomputing, 2006, 70(16):3034-3045.
  • 3Chougdali K, Jedra M, Zahid N. Kernel Weighted Scatter-Difference-Based Discriminant Analysis for Face Recognition [My/Image Analysis and Recognition. Springer Berlin Heidelberg,2008:977-983.
  • 4Liu J, Chen S. Resampling LDMQR and PCA+ LDA for face recognition [M]//AI 2005: Advances in Artificial Intelligence. Springer Berlin Heidelberg,2005:1221- 1224.
  • 5Perlibakas V. Distance Measures for PCA-based Face Recognition [J].Pattem Recognition,2004,25 (6): 711-724.
  • 6Brodi D, Doki B. Reference text line identification using Gaussian kernel extended by morphological operations [C]//MIPRO, 2010 Proceedings of the 33rd International Convention. IEEE,2010:722-727.
  • 7Phillips P J, Moon H, Rauss P, et al. The FERET Evaluation Methodology for Face -Recognition Algorithms [J].IEEE Transactions on Pattern Analysis& Machine Intelligence,2000,22(lO):1090-1104.
  • 8Sire T, Baker S, Bsat M. The CMU pose, illumination, and expression database [J]. Pattern Analysis & Machine Intelligence IEEE Transactions on, 2003,25 (12):1615-1618.
  • 9Martinez A M, Kak A C. PCA versus LDA [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.
  • 10Kim K I, Jung K, Hang J K. Face Recognition Using Kernel Principal Component Analysis [J]. IEEE Signal Processing Letters, 2002,9(2):40-42.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部