期刊文献+

基于自适应小生境粒子群算法的多重Nash均衡求解 被引量:4

SOLVING MULTIPLE NASH EQUILIBRIA BASED ON ADAPTIVE NICHED PARTICLE SWARM ALGORITHM
下载PDF
导出
摘要 针对n人非合作博弈多重Nash均衡求解问题,提出一种自适应小生境粒子群算法。该算法融合了序列小生境技术、粒子群优化算法的思想,并加入了变异算子和自动生成小生境半径机制,使得所有粒子尽可能分布到整个搜索空间的不同局部峰值区域,从而有效地求得博弈问题的多重Nash均衡。最后给出几个数值算例,计算结果表明所提出的算法具有较好的性能。 This paper presents an adaptive niched particle swarm algorithm for solving the multiple Nash equilibria of n-persons' noncooperative game. The algorithm combines the ideas of the sequential niched technique and the particle swarm algorithm, and the mutation operator and the mechanism of automatic niche radius generation are added as well, so that all the particles are distributed to different local peak regions of entire search space as possible as can, thereby the multiple Nash equilibria of the game problem are effectively achieved. Finally, some numerical examples are given and the computation results demonstrate that the proposed algorithm has quite good performance.
出处 《计算机应用与软件》 CSCD 2015年第1期247-250,共4页 Computer Applications and Software
基金 国家自然科学基金项目(11161008) 教育部博士点基金项目(20115201110002) 贵州省自然科学基金项目(黔科合J字[2012]2139号) 贵州大学青年基金项目(2010021)
关键词 小生境技术 粒子群算法 自适应 非合作博弈 NASH均衡 Niche technique Particle swarm algorithm Adaptability Non-cooperative game Nash equilibria
  • 相关文献

参考文献16

  • 1Nash J.Noncooperative Games[J].Annals of Mathematics,1951,54(2):286-295.
  • 2Govindan S,Wilson R.A Global Newton Method for Computing Nash Equilibria[J].Journal of Economic Theory,2003,110(1):65-86.
  • 3P Jean-Jacques,Herings,Ronald Peeters.Homotopy methods to compute equilibria in game theory[J].Economic Theory,2010,42(1):119-156.
  • 4Yuan Yaxiang.A trust region algorithm for Nash Equilibria problems[J].Pacific Journal of Optimization,2011,7(1):125-138.
  • 5Zhang Jianzhong,Biao Qu,Naihua Xiu.Some projection-like methods for the generalized Nash equilibria[J].Comput.Optim.Appl.,2010,45(10):89-109.
  • 6Roughgarden T.Computing equilibria:a computation complexity perspective[J].Economic Theory,2010,42(1):193-236.
  • 7Sureka A,Wurman P.Using Tabu Best Response Search to Find Pure Strategy Nash Equilibria in Normal Form Games[C]//Fourth International Joint Conference on Autonomous Agents and Multiagent Systems,2005:1023-1029.
  • 8Pavlidis N,Parsopoulos K,Vrahatis M.Computing Nash Equilibria through Computational Intelligence Method[J].Journal of Computational and Applied Mathematics,2005,175(1):113-136.
  • 9邱中华,高洁,朱跃星.应用免疫算法求解博弈问题[J].系统工程学报,2006,21(4):398-404. 被引量:10
  • 10陈士俊,孙永广,吴宗鑫.一种求解NASH均衡解的遗传算法[J].系统工程,2001,19(5):67-70. 被引量:28

二级参考文献47

共引文献117

同被引文献43

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部