期刊文献+

一种基于在线凝聚的层次聚类改进算法 被引量:2

AN IMPROVED HIERARCHICAL CLUSTERING ALGORITHM BASED ON ONLINE AGGLOMERATION
下载PDF
导出
摘要 为了快速有效地聚类增量式数据,针对传统在线凝聚聚类算法扁平结构的不足以及执行速度的劣势,在Add C和AHOC算法基础上,提出一种引入层次结构和三角形不等式原理的改进算法——IAHOC算法。将IAHOC算法分别应用于模拟数据和基准数据进行实验,比较分析得到的实验结果表明,IAHOC算法的层次结构能够更好地描述数据结构,并且辅以三角形不等式原理可以有效地降低原算法的计算复杂度。 In order to quickly and efficiently cluster the incremental data, in the paper we present an improved algorithm namely the IAHOC, which introduces the hierarchical structure and triangle inequality principle, based on AddC and AHOC algorithms to address the fiat structure deficiency of traditional online agglomerative clustering algorithm and the disadvantage in its execution speed. The IAHOC algorithm is applied to analog data and benchmark data separately in experiments, and the comparative analyses are made as well, the derived experimental results show that the hierarchical structure of IAHOC can describe data structure better, and with the help of the triangle inequality principle it can effectively reduce the computational complexity in original algorithm.
作者 张钰 林欣
出处 《计算机应用与软件》 CSCD 2015年第1期267-270,共4页 Computer Applications and Software
基金 江苏省高校"青蓝工程"中青年学术带头人培养对象项目
关键词 IAHOC算法 AHOC算法 AddC算法 层次聚类 在线聚类 三角形不等式 IAHOC algorithm AHOC algorithm AddC algorithm Hierarchical clustering Online clustering Triangle inequality
  • 相关文献

参考文献10

  • 1Buhmann J,Kuhnel H.Complexity optimized data clustering by competitive neural networks[J].Neural Computation,1993(5):75-88.
  • 2Guedalia I D,London M,Werman M.An on-line agglomerative clustering method for nonstationary data[J].Neural computation,1999,11(2):521-540.
  • 3Jain A K,Dubes RC.Algorithms for Clustering Data[M].New Jersey:Prentice-Hall,1988.
  • 4Ueda N,Nakano R.A new competitive learning approach based on an equidistortion principle for designing optimal vector quantizers[J].Neural Networks,1994,7(8):1211-1227.
  • 5Zhang D,Chen S,Tan K.Improving the robustness of‘online agglomerative clustering method’based on kernel-induce distance measures[J].Neural Processing Letters,2005(21):45-51.
  • 6林欣.面向检索概念特征的元搜索系统的研究与应用[D].南京:河海大学,2013.
  • 7Elkan C.Using the triangle inequality to accelerate k-means[R].Washington DC:ICML,2003.
  • 8Cope J,Beghin T,Remagnino P,et al.One-hundred plant species leaves data set[DB/OL].http://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set.
  • 9Han J,Kamber M,Pel J.Data Mining:Concepts and Techniques[M].3rd ed.San Francisco:Morgan Kaufman Publishers,2012.
  • 10Kaufman L,Rousseeuw P J.Finding Groups in Data:an Introduction to Cluster Analysis[M].New Jersey:John Wiley&Sons,2009.

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部