期刊文献+

有机工质透平膨胀机喷嘴的响应面分析优化 被引量:1

Nozzle Optimization for Organic Turbo-Expander by Response Surface Analysis
下载PDF
导出
摘要 为了提高有机工质膨胀机的性能,建立了喷嘴型线优化设计平台,并以喷嘴叶片损失系数为性能指标、以喷嘴型线5个控制点的距离参数为设计变量进行了有机透平膨胀机喷嘴的试验设计。采用响应面方法分析了叶片损失系数随型线控制点的变化,揭示了叶片损失系数对喷嘴型线变化的敏感性。研究结果表明:叶片压力面后段、叶片压力面中部、叶片吸力面后段均存在最佳型线,使喷嘴的叶片损失系数较小;在喷嘴的设计过程中,减小喷嘴前段和中段的厚度,可以有效降低喷嘴损失系数;叶片吸力面中段型线的改变对叶片损失系数的影响较大,叶片压力面中段型线的变化对喷嘴损失系数的影响最小。相对于原型喷嘴,采用最优喷嘴型线后叶片损失系数下降了10%。该研究不仅获得了使叶片损失系数较小的喷嘴型线,还能揭示影响喷嘴性能指标的关键因素。 An optimization design platform for the profile of nozzle was established, the vane loss coefficient was taken as the performance index, and the distance parameters of five control points on the profile were considered as the variables to experimentally design the nozzle of organic turbo-expander. The response surface method was adopted to analyze the variation of vane loss coefficient with the distance parameters, and the sensitivity of vane loss coefficient to the distance parameters was also revealed. The optimal profiles for the trailing section of pressure surface, the middle section of pressure surface and the trailing section of suction surface were obtained. The results illustrate that the vane loss coefficient can be efficiently decreased by reducing the thickness of front and middle sections of nozzle vane. The profile variation of middle section of the suction surface greatly affects the vane loss coefficient, while the profile variation of the middle section of pressure surface slightly affects the vane loss coefficient. The vane loss coefficient decreases by 10% in the optimal profile design.
作者 王星 刘小民
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第1期7-13,共7页 Journal of Xi'an Jiaotong University
基金 陕西省科技统筹创新工程计划资助项目(2011KTCL01-04)
关键词 透平膨胀机 喷嘴型线 响应面优化 叶片损失系数 turbo-expander nozzle profile response surface optimization vane loss coefficient
  • 相关文献

参考文献12

  • 1BERTANI R.World geothermal generation in 2007[C]∥Proceedings of European Geothermal Congress.Unterhaching,Germany:European Geothermal Energy Council,2007:1-5.
  • 2BERTANI R.Geothermal power generation in the world 2005-2010 update report[J].Geothermics,2012,4:1-29.
  • 3YAMAMOTO T,FURUHATA T,ARAI N,et al.Design and testing of the organic Rankine cycle[J].Energy,2001,26(3):449-463.
  • 4WANG X,LIU X M,ZHANG C H.Performance analysis of organic Rankine cycle with preliminary design of radial turbo expander for binary-cycle geothermal plants[J].Journal of Engineering for Gas Turbine and Power,2013,135:111402.
  • 5PAN L S,WANG H X.Improved analysis of organic Rankine cycle based on radial flow turbine[J].Applied Thermal Engineering,2013,61:606-615.
  • 6FIASCHI D,MANFRIDA G,MARASCHIELLO F.Thermo-fluid dynamics preliminary design of turboexpanders for ORC cycles[J].Applied Energy,2012,97:601-608.
  • 7KANG S H.Design and experimental study of ORC(organic Rankine cycle)and radial turbine using R245fa working fluid[J].Energy,2012,41:514-524.
  • 8李艳,李海波,顾春伟.有机工质向心透平气动设计与变工况性能预测[J].工程热物理学报,2013,34(1):63-66. 被引量:23
  • 9PASQUALE D,GHIDONI A,REBAY S.Shape optimization of an organic Rankine cycle radial turbine nozzle[J].Journal of Engineering for Gas Turbines and Power,2013,135:042308.
  • 10李艳,顾春伟.高膨胀比有机工质向心透平气动优化研究[J].工程热物理学报,2013,34(7):1239-1242. 被引量:12

二级参考文献13

  • 1刘坚风,曹孝瑾.向心透平损失模型和出气角对热力气动计算的影响[J].燃气轮机技术,1994,7(3):28-34. 被引量:4
  • 2陈波,袁新.基于NURBS三维造型的粘性气动最优化设计技术[J].工程热物理学报,2005,26(5):764-766. 被引量:10
  • 3杨佃亮,李颖晨,丰镇平.超音速喷嘴叶栅造型设计及数值分析[J].工程热物理学报,2006,27(2):217-219. 被引量:7
  • 4Glassman A J. N Aeronautics C. Space Administration. Computer Program for Design Analysis of Radial-Inflow Turbines JR]. NASA Technical Report TN D-8164, 1976.
  • 5Wasserbauer C A, Glassman A T. FORTRAN Program- ming for Predicting Off-Design Performance of Radial In- flow Turbines [R]. NASA Technical Report TN D-8063, 1975.
  • 6Meitner P L, Glassman A J. Computer Code for Off- Design Performance Analysis of Radial Inflow Turbines With Rotor Blade Sweep [R]. NASA Technical Report TP-2199, 1983.
  • 7FENG Zhenping, Deng Qinghua, Li Jun. Aerotherm- Dynamic Design and Numerical Simulation of Radial In- flow Turbine Impeller for a 100 kW Microturbine [C]// Proceedings of the ASME Turbo Expo. 2005: 873-880, 1037.
  • 8DENG Qinghua, NIU Jiufang, MAO Jingru, et al. Exper- imental and Numerical Investigation on Overall Perfor- mance of a Radial Inflow Turbine for 100 kW microtur- bine [C]// Proceedings of the ASME Turbo Expo. 2007: 919 -926. 1085.
  • 9Qiu x w, N Baines. Performance Prediction for High Pressure-Ratio Radial Inflow Turbines [C]// Proceedings of the ASME Turbo Expo. 2007: 945-956, 1868.
  • 10陈宏冀.子午流道Bézier曲线造型中的几何问题[J].工程热物理学报,1997,18(4):445-449. 被引量:11

共引文献30

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部