期刊文献+

拓展目标杂波概率假设密度估计 被引量:1

Estimation of Clutter Probability Hypothesis Density in Extended Objects
下载PDF
导出
摘要 针对拓展目标概率假设密度滤波器中的未知杂波概率假设密度,提出了杂波概率假设密度估计算法。算法利用有限混合模型极大后验估计杂波概率假设密度,取混合权重的熵分布作为混合参数的先验分布;在渐进假设条件下,利用拉格朗日乘子推导了混合权重的递进估计公式;在混合权重递进估计过程中,通过混合权重置零操作来实现对有限混合模型中混合分量的删减。以二维场景为例对算法进行了仿真实验,结果表明:在拓展目标概率假设密度滤波器高斯混合实现的框架内,所提杂波概率假设密度估计算法的跟踪性能接近真实杂波概率假设密度时的跟踪性能。 An algorithm to estimate the clutter probability hypothesis density is proposed to deal with unknown clutter probability hypothesis densities in extended object probability hypothesis density filter. A finite mixture model is applied in estimating clutter probability hypothesis density with maximum a posterior estimation, and the entropy distribution of mixed weights is regarded as the prior distribution of mixing parameters. A recursive estimation formula of mixed weights is derived by using Lagrange multiplier under an approximation assumption. Mixture components of the finite mixture model are pruned by setting corresponding mixed weights to zeros in the recursive estimation procedure. Simulation results in a two-dimensional scenario show that the tracking performance of the proposed algorithm is close to the ground truth in Gaussian mixture implementation of extended object probability hypothesis density filter.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第1期92-96,132,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61304261) 江苏大学高级人才启动基金资助项目(12JDG076)
关键词 拓展目标跟踪 杂波概率假设密度 极大后验 熵分布 extended object tracking clutter probability hypothesis density maximum a posterior entropy distribution
  • 相关文献

参考文献4

二级参考文献26

  • 1TICHAVSKYP,MURAVCHIK C,NEHORAI A.Posterior Cramér-Rao bounds for discrete time nonlinear filtering[J].IEEE Transactions on Signal Processing,1998,46(5):1701-1722.
  • 2HERNANDEZ M,FARINA A,RISTIC B.PCRLB for tracking in cluttered environments:measurement sequence conditioning approach[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42 (2):680-704.
  • 3HERNANDEZ M,BENAVOLI A,GRAZIANO A,et al.Performance measures and MHT for tracking move-stop-move targets with MTI sensors[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):996-1025.
  • 4REZAEIAN M,VO B N.Error bounds for joint detection and estimation of a single object with random finite set observation[J].IEEE Transactions on Signal Processing,2010,58(3):1493-1506.
  • 5THARMARASA R,KIRUBARAJAN T,HERNANDEZ M,et al.PCRLB-based multisensor array managementfor multitarget tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43 (2):539-555.
  • 6KOCH W.Bayesian approach to extended object and cluster tracking using random matrices[J].IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):1042-1059.
  • 7MAHLER R.PHD filters for nonstandard targets:I Extended targets[C]// Proceedings of the 12th International Conference on Information Fusion.Piscataway,NJ,USA:IEEE,2009:915-921.
  • 8LIAN Feng,HAN Chongzhao,LIU Weifeng,et al.Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets[J].Signal Processing,2012,92(7):1729-1744.
  • 9KOCH J W.Bayesian approach to extended object and cluster tracking using random matrices[J].IEEE Transactions on Aerospace and Electronic Systems,2008,44(3):1042-1059.
  • 10FELDMANN M,FRANKEN D,KOCH J W.Tracking of extended objects and group targets using random matrices[J].IEEE Transactions on Signal Processing,2011,59(4):1409-1420.

共引文献28

同被引文献15

  • 1Mahler R. Multi-target Bayes filtering via first-order multi-target moments [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2003, 39(4): 1152-1178.
  • 2Vo B-N, Ma W-K. The Gaussian mixture probability hypothesis density filter [J]. IEEE Transactions on Signal Processing(S 1053-587X), 2006, 54(11): 4091-4104.
  • 3Vo B-N, Singh S, Doucet A. Sequential Monte Carlo method for multi-target filtering with random finite sets [J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 2005, 41(4): 1224-1245.
  • 4Mahler R. PHD filters of higher order in target number [J] IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 2007, 43(4): 1523-1543.
  • 5Vo B-T, Vo B-N, Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter [J]. IEEE Transactions on Signal Processing (S1053-587X), 2007, 55(7): 3553-3567.
  • 6Mahler R. Statistical Multisource-Multitarget Information Fusion [M]. USA: Artech House, 2007.
  • 7Lian Feng, Han Chongzhao, Liu Weifeng. Estimating unknown clutter intensity for PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 2004, 46(4): 2066-2078.
  • 8Mahler R, Vo B-T, Vo B-N. CPHD filtering with unknown clutter rate and detection profile [J]. IEEE Transactions on Signal Processing (S 1053-587X), 2011, 59(8): 3497-3513.
  • 9Zheng Xuetao, Song Liping. Improved CPHD filtering with unknown clutter rate [C]//IEEE Proceedings of the 10th Word Congress on Intelligent Control and Automation. USA: IEEE, 2012:4326-4331.
  • 10Zhang Hongjian, Jing Zhongliang, Hu Shiqiang. Gaussian mixture CPHD filter with gating technique [J]. Signal Processing (S0165-1684), 2009, (89): 1521-1530.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部