期刊文献+

一种线性迭代非刚体射影重建方法 被引量:4

A Linearly Iterative Method for Non-Rigid Projective Reconstruction
下载PDF
导出
摘要 为了从非标定图像序列中重建出三维非刚体的射影结构,提出了一种线性迭代非刚体射影重建方法。该方法将所有图像点放入一个图像矩阵中,利用图像矩阵具有低秩的特性,通过因式分解构造一个线性迭代算法来求解图像点的深度因子,最终通过奇异值分解实现非刚体的射影重建。该方法的优点是:射影重建过程都是线性求解,且将所有图像及图像点都平等地对待,并没有倚重某些图像及图像点。模拟实验结果表明,所提重建方法比经典的Alessio方法重投影误差小18%,比Brand方法小27%;最后的真实实验结果表明,所提的重建方法重投影误差只有1.28个像素,从而验证了所提方法的有效性。 A linearly iterative method for reconstruction of 3D non-rigid projection is presented to reconstruct the 3D non-rigid projective structure from an un-calibrated image sequence. All the image points are placed into an image matrix, and the linearly iterative method that employs the singular value decomposition is used to get the depth factors of the image points by using the low rank property of the image matrix. Then the projective reconstruction is realized through the singular value decomposition. The innovations of the proposed method are that the projective reconstruction is linear, all the image points are treated fairly, and it does not rely on certain image or image points. Experiment results with simulation data show that the proposed method is 18% and 27% smaller in re-projective error than Alessio's method and Brand's method, respectively. A real experiment shows that the method has only 1.28 pixels error, and hence efficient.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第1期102-106,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61402274) 陕西师范大学中央高校基本科研业务费资助项目(GK201402040 GK201302029) 陕西师范大学学习科学交叉学科培育计划资助项目
关键词 射影重建 非刚体 因式分解 projective reconstruction non-rigid factorization
  • 相关文献

参考文献16

  • 1SHEN S.Accurate multiple view 3Dreconstruction using patch-based stereo for large-scale scenes[J].IEEE Transactions on Image Processing,2013,22(5):1901-1914.
  • 2LEE M,CHOI C.Real-time facial shape recovery from a single image under general,unknown lighting by rank relaxation[J].Computer Vision and Image Understanding,2014,120(3):59-69.
  • 3WU F,ZHANG M,HU Z.Self-calibration under the Cayley framework[J].International Journal of Computer Vision,2013,103(3):372-398.
  • 4BASTIAN G,MATHIEU A,KALIN K,et al.A super-resolution framework for high-accuracy multiview reconstruction[J].International Journal of Computer Vision,2014,106(2):172-191.
  • 5PENG Y,LIU S,LIU F.Projective reconstruction with occlusions[J].Opto-Electronics Review,2010,18(2):150-154.
  • 6BREGLER C,HERTZMANN A,BIERMANN H.Recovering non-rigid 3Dshape from image streams[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2000:690-696.
  • 7NOGUER F,FUA P.Stochastic exploration of ambiguities for nonrigid shape recovery[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(2):463-475.
  • 8LIU S,PENG Y,ZENG Z,et al.An iterative method based on 1D subspace for projective reconstruction[J].Opto-Electronics Review,2011,19(1):89-94.
  • 9VALMADRE J,ZHU Y,SRIDHARAN S,et al.Efficient articulated trajectory reconstruction using dynamic programming and filters[C]∥12th European Conference on Computer Vision.Berlin,Germany:Springer,2012:72-85.
  • 10TAO L,MEIN S,QUAN W,et al.Recursive nonrigid structure from motion with online learned shape prior[J].Computer Vision and Image Understanding,2013,117(10):1287-1298.

共引文献2

同被引文献37

  • 1吴悦,翁小兰.非刚体三维运动图像重建优化模型仿真[J].微电子学与计算机,2015,32(5):157-160. 被引量:5
  • 2M Lee, C Choi. Real-time facial shape recovery from a sin- gle image under general, unknown lighting by rank relaxa- tion[ J].Computer Vision and Image Understanding ,2014, 120(3) :59 -69.
  • 3R Tsai. An efficient and accurate camera calibration tech- nique for 3D machine vision[ A]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C]. Miami Beach, 1986:364 - 374.
  • 4Z Zhang. A flexible new technique for camera calibration [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2000,22 ( 11 ) : 1330 - 1334.
  • 5T Elamsy, A Habed, B Boufama. Self-calibration of station- ary non-rotating zooming cameras [ J ]. Image and Vision Computing ,2014,32 ( 3 ) :212 - 226.
  • 6O Faugras, Q Luong, S Maybank. Camera self-calibration : theory and experiments[A]. Proceedings of the Second Eu- ropean Conference on Computer Vision[ C]. May 19 - 22, 1992, Italy,321 - 334.
  • 7F Wu, M Zhang, Z Hu. Self-calibration under the cayley framework[ J ]. International Journal of Computer Vision, 2013,103 (3) :372 - 398.
  • 8N Akkad, M Men'as, A Saaidi, K Satori. Camera self-cali- bration with varying intrinsic parameters by an unknown three-dimensional scene [ J ]. The Visual Computer, 2014, 30(5) :519 -530.
  • 9J Xiao, J Chai, T Kanade. A closed-form solution to non- rigid shape and motion recovery [ J ]. International Journal of Computer Vision, 2006,67 ( 2 ) : 233 - 246.
  • 10Y Dai, H Li, M He. A simple prior-free method for non- rigid structure-from-motion factorization [ J ]. International Journal of Computer Vision,2014,107 (2) : 101 - 122.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部