期刊文献+

基于离散与连续选址相结合的平面选址问题研究--以华北石油局大牛地气田污水处理厂选址为例 被引量:3

Study on Planer Location Method by Integrating Continuous And Discrete Methods:North China Petroleum Bureau Daniudi gas wastewater treatment plant site as an example
原文传递
导出
摘要 选址问题的研究中,大多考虑的是理论距离(例如欧式距离等);但在实际问题中,真实的公路运输距离和理论距离有较大差异,并且修建公路的成本较高.在尽量利用当前的公路交通网络同时,又能得到最优选址,在现实中具有重要意义.以华北石油局大牛地气田第一采气厂污水处理厂选址为例,分别采用重心法选址、最大值最小化选址、多目标选址等选址的方法得到污水处理厂的备选点,并结合实际距离模拟出了各个备选点的运输费用,再综合考虑当地政策和交通状况等因素,最终得到了使得运输费用最低的新的污水处理厂的位置坐标P(9.33,11.79),在该位置建立污水处理厂比之前的运输方案每年大约可节约511万元的运输费用.方法最大的优点是减小了在选址过程中理论距离与实际距离的误差,在现实中具有一定的指导意义. In the previous study on planer location problem,the majority consideration is the theoretical distance,such as the Euclidean distance.However,for practical matters,there is a big difference between the real and theoretical road transport distance.In addition,the cost of road construction is also high.Therefore,both making full use of the current road network and obtaining the optimal location are urgent problems needed a further Study.This paper takes the location of the sewage treatment plant of the first gas production of the North China Petroleum Bureau Daniudi gas as an example.In the process of the research,we get several alternative points of the sewage treatment plant by siting gravity method,maximum minimized location method and multi-objective approach,then we simulate the actual transportation costs from alternative points of each,and finally we get the lowest transport costs and new sewage treatment plant location coordinates P(9.33,11.79) by considering the local policy,traffic conditions and many other factors.As a result,the establishment of the plant in this position can save about 5.11-million Yuan than the transport costs of previous position each year.In conclusion,we found that the biggest advantage of the method is to reduce the error between theoretical distance and actual distance in the selection process,which has a certain guiding significance in reality.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第24期95-103,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(71473232,71173202,71103163,71103164,71301153) 教育部新世纪优秀人才支持计划(NCET-13-1012) 教育部人文社会科学研究青年基金(10YJC790071) 中央高校基本科研业务费专项资金(CUG110411,CUG120111,G2012002A)
关键词 大牛地气田 离散选址 连续选址 多目标方法 petroleum bureau daniudi discrete location continuous location multi-objective approach
  • 相关文献

参考文献19

  • 1Weber A.Theory of the Location of Industries[M].Chicago:University of Chicago Press,1962.
  • 2Alp O,Erkut E,Drezner Z.An efficient genetic algorithm for the p-median problem[J].Annals of Operations research,2003,122(1-4):21-42.
  • 3Mesa J A,Brian Boffey T.A review of extensive facility location in networks[J].European Journal of Operational Research,1996,95(3):592-603.
  • 4Brimberg J,Drezner Z.A new heuristic for solving the p-median problem in the plane[J].Computers&Operations Research,2012.
  • 5杨丰梅,华国伟,邓猛,黎建强.选址问题研究的若干进展[J].运筹与管理,2005,14(6):1-7. 被引量:75
  • 6马良,蒋馥.约束多目标选址问题及其算法[J].运筹与管理,1998,7(2):7-12. 被引量:12
  • 7林晓颖.单目标选址问题的研究[J].哈尔滨商业大学学报(自然科学版),2005,21(4):522-524. 被引量:4
  • 8孙晓飞,张强.物流配送中心选址的多目标优化模型[C]//第十二届中国管理科学学术年会论文集,2010.
  • 9Colome R,Lourengo H R,Serra D.Anew chance-constrained maximum capture location problem[J].Annals of operations Research,2013,122(1-4):121-139.
  • 10Drezner T,Drezner Z.The maximin gradual cover location problem[J].OR Spectrum,2013:1-19.

二级参考文献158

  • 1马良.无约束多目标优化问题的算法[J].计算机工程与应用,1997,33(4):38-40. 被引量:4
  • 2Scaparra M P. Facilities, locations, customers:building blocks of location models:a survey[R]. University of Pisa,2001. http://www.di.unipi.it/~scaparra/resume.html.
  • 3Hakimi S L. Optimal locations of switching centers and the absolute centers and medians of a graph[J]. Oper. Res.,1970,4:B-31.
  • 4Tanel B C,Richard L. Location on networks:a survey[J]. Management Science,1983,29(4):482~497.
  • 5Kariv O,Hakimi S L. An algorithmic approch to network location problems,part1:the p-centers[J]. SIAM J. Appl. Math.,1979,37:513~538.
  • 6Handler G Y. Minimax location of a facility in an undirected tree graph[J]. Transportation Sci.,1973,7:287~293.
  • 7Lin C C. On the vertex addends in minimax location problems[J]. Transportation Sci.,1975,9:165~168.
  • 8Dearing P M,Francis R L. A minimax location problem on a network[J]. Transportation Sci.,1974,8:333~343.
  • 9Schmeichel E F,Pierce J G. On the p-centers in networks[J]. Transportation Sci.,1978,12:1~15.
  • 10Cockanye E J,Hedetniem S M. Linear algorithms for finding Jordan center and path center of a tree[J]. Transportation Sci.,1981,15:98~114.

共引文献107

同被引文献51

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部