摘要
选址问题的研究中,大多考虑的是理论距离(例如欧式距离等);但在实际问题中,真实的公路运输距离和理论距离有较大差异,并且修建公路的成本较高.在尽量利用当前的公路交通网络同时,又能得到最优选址,在现实中具有重要意义.以华北石油局大牛地气田第一采气厂污水处理厂选址为例,分别采用重心法选址、最大值最小化选址、多目标选址等选址的方法得到污水处理厂的备选点,并结合实际距离模拟出了各个备选点的运输费用,再综合考虑当地政策和交通状况等因素,最终得到了使得运输费用最低的新的污水处理厂的位置坐标P(9.33,11.79),在该位置建立污水处理厂比之前的运输方案每年大约可节约511万元的运输费用.方法最大的优点是减小了在选址过程中理论距离与实际距离的误差,在现实中具有一定的指导意义.
In the previous study on planer location problem,the majority consideration is the theoretical distance,such as the Euclidean distance.However,for practical matters,there is a big difference between the real and theoretical road transport distance.In addition,the cost of road construction is also high.Therefore,both making full use of the current road network and obtaining the optimal location are urgent problems needed a further Study.This paper takes the location of the sewage treatment plant of the first gas production of the North China Petroleum Bureau Daniudi gas as an example.In the process of the research,we get several alternative points of the sewage treatment plant by siting gravity method,maximum minimized location method and multi-objective approach,then we simulate the actual transportation costs from alternative points of each,and finally we get the lowest transport costs and new sewage treatment plant location coordinates P(9.33,11.79) by considering the local policy,traffic conditions and many other factors.As a result,the establishment of the plant in this position can save about 5.11-million Yuan than the transport costs of previous position each year.In conclusion,we found that the biggest advantage of the method is to reduce the error between theoretical distance and actual distance in the selection process,which has a certain guiding significance in reality.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第24期95-103,共9页
Mathematics in Practice and Theory
基金
国家自然科学基金(71473232,71173202,71103163,71103164,71301153)
教育部新世纪优秀人才支持计划(NCET-13-1012)
教育部人文社会科学研究青年基金(10YJC790071)
中央高校基本科研业务费专项资金(CUG110411,CUG120111,G2012002A)
关键词
大牛地气田
离散选址
连续选址
多目标方法
petroleum bureau daniudi
discrete location
continuous location
multi-objective approach