摘要
引入了拟绝对-*-k-仿正规算子,获得了拟绝对-*-k-仿正规算子的一个充要条件.并证明了拟绝对-*-k-仿正规算子在0≤k≤1上是有限上升的,作为此性质的应用,证明了若T是拟绝对-*-k-仿正规算子,其中0≤k≤1,则Weyl谱和本质近似点谱的谱映射定理成立.最后证明了若T是拟绝对-*-k-仿正规算子,其中0≤k≤1,则σ_(ja)(T)\{0}=σ_a(T)\{0}.
In this paper,we introduce quasi-absolute-*-k-paranormal operators.We prove that quasi-absolute-*-k-paranormal operators have finite ascent,where 0 ≤ k ≤ 1.Use the result,we also show that if T is quasi-absolute-*-k-paranormal for 0 k≤ 1,then w(f(T)) =f(w(T)),σ_(ea)(f(T)) = f(σ_(ea)(T)) for every f ∈ H(σ(T)),where H(σ(T)) denotes the set of all analytic functions on an open neighborhood of cr(T).Finally we prove that if T is quasi-absolute-*-k-paranormal for 0 ≤ k≤ 1,then σ_(ja)(T)/{0} = σ_a(T)/{0}.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第24期272-275,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(11201127
11226185)