期刊文献+

高温变形过程中的动态再结晶类型识别 被引量:5

The identification of dynamic recrystallization type during hot deformation process
原文传递
导出
摘要 通过分析高温变形过程中伴随再结晶晶粒长大的内部位错密度变化,判别不同变形条件下动态再结晶过程的进行形式,研究动态再结晶形式对变形参数的依赖规律,发现:低温大应变速率下,高温变形过程中的再结晶形式以连续性动态再结晶为主;高温低应变速率下,以周期性动态再结晶为主.根据动态再结晶软化与加工硬化平衡,得到反映稳态流动时钛合金流动应力对变形参数的响应,建立具有实际物理意义描述钛合金稳态流动本构关系的Arrhenius型方程.通过热模拟压缩实验得到800~900℃,0.0005~10 s-1条件下的TC18钛合金高温变形流动应力应变曲线,验证动态再结晶形式的判据模型,并通过DMM耗散效率分布图分析模型的适用性.通过显微组织分析,研究不同变形参数下的高温变形过程中,不同动态再结晶形式对应的再结晶晶粒粗化/细化的特点.通过各变形条件下真应变?=0.8时的稳态应力验证得到的本构模型,并分析应变速率敏感系数的变化规律. The type of dynamic recrystallization process during the high-temperature deformation under different conditions has been identified through the analysis on the dislocation evolution involving with recrystallized grains growing. And the dependence of the type of dynamic recrystallization on the deformation parameters has been discussed. The conditions with lower temperatures and higher strain rates, higher temperatures and lower rates correspond to continuous and periodic DRX, respectively. A constitutive model, describing the response of steady flow stress to deformation parameters, has been proposed based on the balance state of working-hardening and dynamic softening. The constitutive model has a similar type with Arrhenius equation with the coefficients possessing their physical meanings. The true stress-true strain curves during the deformation, with temperatures ranging from 800 to 900℃ and strain rates ranging from 0.0005 to 10 s-1, of TC18 alloy have been obtained through the isothermal compression experiment. The proposed model, identifying the type of dynamic recrystallization, has been verified through the analysis of the flow characteristics of the stress-strain curves under certain deformation conditions. And the power dissipation efficiency map, utilized in DMM model, has been employed to verify the applicability of the model. The correspondence of different types of DRX on the coarsening or refining effect of DRX-ed grains during hot deformation of TC18 alloy has been analyzed through microstructure observation. The proposed constitutive model, suitable to the steady state, has also been verified through substitution of steady stress at strain of 0.8 and the value range of strain rate sensitivity coefficient has been analyzed according to the constitutive model.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2014年第12期1309-1318,共10页 Scientia Sinica(Technologica)
关键词 流变特性 位错密度 再结晶形式 本构关系 高温变形 flow characteristics, dislocation density, dynamic recrystallization type, constitutive model, hot deformation
  • 相关文献

参考文献24

  • 1Chen X M, Lin Y C, Wen D X, et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des, 2014, 57:568-577.
  • 2Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater, 1996, 44:127-136.
  • 3Zhang W F, Li X L, Sha W, et al. Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel. Mater Sci Eng A, 2014, 590:199-208.
  • 4Momeni A, Ebrahimi G R, Jahazi M, et al. Microstructure evolution at the onset of discontinuous dynamic recrystallization: A physics-based model of subgrain critical size. J Alloy compd, 2014, 287:199-210.
  • 5Sha W, Malinov S. Titanium Alloys: Modelling of Microstructure, Properties and Applications. Cambridge: Woodhead Publishing, 2009. 265.
  • 6Moiseyer V N. Titanium alloys-Russian aircraft and aerospace applications. London: Taylor & Francis Grout), 2005.98-123.
  • 7梁后权,郭鸿镇,宁永权,姚泽坤,赵张龙.基于软化机制的TC18钛合金本构关系研究[J].金属学报,2014,50(7):871-878. 被引量:24
  • 8Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater, 2013, 51:2685-2699.
  • 9Boyer P R. Application of beta titanium alloys in airframes. In: Beta titanium alloys in the 1990's. Proceedings of the Symposium, TMS Annual Meeting, 1993 Feb 22-24, Warrendale, PA. Warrendale PA: Minerals, Metals & Materials Society, 1993. 333-346.
  • 10Stuwe H P, Ortner B. Recrystallization in hot working and creep. Met Sci, 1974, 8:161-167.

二级参考文献47

  • 1王桂生.Ti-6Al-2Zr-1Mo-1V合金组织与性能的研究[J].稀有金属,1995,19(5):352-356. 被引量:10
  • 2曾卫东,胡鲜红,俞汉清,周义刚.Ti─17合金高温变形机理研究[J].材料工程,1996,24(9):27-30. 被引量:26
  • 3王斌,郭鸿镇,姚泽坤,陈金科,李蓬川.热压参数对TA15合金流动应力及显微组织的影响[J].锻压技术,2006,31(6):106-109. 被引量:18
  • 4PU Z J,WU K H,SHI J.Development of constitutive relationships for the hot deformation of boron microalloying TiAl-Cr-V alloys[J].Materials Science and Engineering,1995,A192/193: 780-787.
  • 5RAO K P,HAWBOLT E B.Development of constitutive relationships using compression testing of a medium carbon steel[J].Journal of Engineering Materials and Technology,1992,114(1):116-123.
  • 6MEDINA S F,HERNADEZ C A.General expression of Zener-Hollomon parameter as a function of chemical composition of low alloy and microalloyed steels[J].Acta Materialia, 1996,44(1): 137-146.
  • 7PRASAD Y V R K, SESHACHARYULU T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998, 43(6): 243-258.
  • 8HUANG C,DEAN T A.Flow behavior and microstructure development of forged Ti-25Al-10Nb-3V-1Mo(super α2)[J].Materials Science and Engineering,1995,A191: 39-47.
  • 9LIU Y,BAKER T N.Deformation characteristics of IMI685 titanium alloy under βisothermal forging condition[J].Materials Science and Engineering,1995,A197:125-131.
  • 10ROBERTSON D G,MCSHANE H B.Analysis of high temperature flow stress of titanium alloys IMI550 and Ti-10V-2Fe-3Al during isothermal forging[J].Materials Science and Technology,1998,14:339-345.

共引文献105

同被引文献40

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部