期刊文献+

CEV模型下有交易成本和随机波动率的亚式期权定价问题的文献综述

Literature review of with transaction costs and stochastic volatility's Asian option pricing problem under CEV mode
下载PDF
导出
摘要 随着金融衍生品的发展,对其进行定价成为理论和实务操作中的重点。亚式期权作为一种强依赖路径的衍生品,在金融市场中有套期保值作用,在管理中有经理股票期权激励作用。因此,设计出更加切合市场实际的定价模型非常重要。本文选取了相比较B-S模型更加实际的CEV模型作为标底资产的路径过程,加入随机波波动率服从有限Markov链的情况下有交易成本的亚式期权定价公式。在已有的相关文献参考下,可以得出其偏微分方程。并且通过二叉树算法,实现定价计算。 Along with the development of financial derivatives, value pricing become the key either in theoretical or in practical operation. Asian options are strong path -dependence derivatives in financial markets, and have huge potential development in the hedging function and management of the executive stock option incentive mechanism. Thus more tailored application to the actual market of pricing model is very important, In this paper, we select CEV model which is more practical compared to B-Smodel as the base price assets. We analyses Asian option pricing formula with volatility following the Markov chain in limited situation with transaction cost. In the existing literature, we may conclude the partial differential equations. And through the binary tree algorithm, realize its pricing results.
作者 邓东雅
出处 《特区经济》 2014年第12期89-91,共3页 Special Zone Economy
关键词 随机波动率 亚式期权 交易成本 CEV模型 Stochastic Volatility Asian Option Transaction Costs CEV model
  • 相关文献

参考文献22

  • 1Hull.J,期权,期货和衍生证券[M].张陶伟译,高等教育出版社,2001,125-342.
  • 2Bachelier L.,Theorie de la speculation,Ann.Sci.Ecole Norm,Sup1900,1721-86,Reprintedin Cootner(1964).
  • 3Sandmann G,S J Koopman,Estimation of stochastic volatility models via Monte Carlo maximum likelihood.Journal of Econometrics,1998,87:271-301.
  • 4Fama E F,The Behavior of Stock Market Prices.Jou rnal of Business,1965,38:34-105.
  • 5Black.F,Scholes.M,The Pricing of Options,Corpo rate Liabilities.Journal of Political Economy,1973,81:637-654.
  • 6Hull J,A White,The pricing of options on assets with stochastic volatility,Journal of finance,1987,42:281-300.
  • 7Engle R F.Autoregressive Conditional Heterosked asticity with Estimates of the Variance of U.K.Inflation[J],Econometrical,1982,50:987-1008.
  • 8Bollerslev T.,Generalized Autoregressive Condi tional Heteroskedasticity,Journal of Economics,1986,31:307-327.
  • 9Taylor S J.,Modeling financial time series,Chi chester:John Wiley and Sons,1986.
  • 10Heston S.L.A closed-form solution for options with stochastic volatility with applications to bond and currency options[J].Review of Financial Studies,1993(6):327-343.

二级参考文献16

  • 1杜雪樵,丁华.CEV模型下两值期权的数值解[J].南方经济,2006,35(2):23-28. 被引量:13
  • 2[1]Cox J C,Ross S A.The valuation of option for alternative stochastic process[J].Journal of Financial Economics,1976 (3):145-166.
  • 3[5]龚光鲁,钱敏平.应用随机过程教程及在算法和智能计算中的随机模型[M].北京:清华大学出版社,2005:156-234.
  • 4[6]Boyle Phelimp,Tian Yisong.Pricing lookback and barrier options under the CEV process[J].Journal of Financialand QuantitatiCe Analysis,1999,34(2):242-264.
  • 5[7]Cox J C,Ross S A,Stein M R.Option pricing:a splified approach[J].Journal of Financial Economics,1979,7(5):229-262.
  • 6John C Hull.Options,Futures,and Other Derivatives[M].Upper Saddle River,NJ: Prentice Hall,2001.
  • 7John C Cox,Mark Rubinstein.Options Markets [M].Upper Saddle River,NJ:Prentice Hall.,2001.
  • 8Paul Wilmmot,San Howison.The Mathematic of Financial Derivates[M].Cambridge :Cambridge University Press,1995.
  • 9Cox, J C, Ruhinstein, M, 1985, Options Markets, Prentice - Hall, Englewood Cliffs, NJ.
  • 10Hull, J, A, White The pricing of option on asset with stochastic volatility[J] Journal of Finance, 1987, 42:281-300.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部