摘要
深入研究了温度、湿度以及风速等气象条件对电力负荷的影响,建立了基于径向基函数(RBF)神经网络进行短期负荷预测的模型。以广东省某地区月负荷数据作为原始数据,利用RBF神经网络的非线性逼近能力预测出日负荷曲线,并用实测数据对其进行了检验,同时与同等条件下建立的BP神经网络模型预测的结果进行了综合对比。结果表明,基于RBF神经网络模型预测的误差比BP神经网络模型预测的误差要小,其预测精度可以为供电企业对负荷进行合理的规划和准确的调度提供依据,具有一定的工程指导意义。
出处
《供用电》
2014年第12期47-49,共3页
Distribution & Utilization