期刊文献+

一类非局部边值问题的数值方法

Numerical algorithm for a class of nonlocal boundary value problem
下载PDF
导出
摘要 讨论一类带有积分边界条件的非线性常微分方程边值问题的数值方法。通过建立满足边界条件的再生核空间,获得简单易行的再生核数值逼近方法。给出方程精确解的级数表达式,通过截断级数获得方程的近似解。数值模拟结果说明了该方法的有效性。 This paper addresses a numerical method for a class of nonlinear ordinary differential equation boundary value problem with integral boundary conditions and discusses the way the simple reproducing kernel numerical approximate method is established by constructing the reproducing kernel space adequate for the boundary conditions involved.The paper also describes the exact solution obtained in the form of series and the approximate solution obtained by truncating the series representation of the exact solution.The numerical simulation demonstrates the validity of the proposed method.
出处 《黑龙江科技大学学报》 CAS 2014年第6期663-666,共4页 Journal of Heilongjiang University of Science And Technology
基金 黑龙江省教育厅科学技术研究项目(12521466)
关键词 非局部边值问题 非线性常微分方程 再生核空间 nonlocal boundary value problems nonlinear ordinary differential equation reproducing kernel space
  • 相关文献

参考文献4

二级参考文献24

  • 1杨丽宏,杜红.再生核空间中非线性算子方程的精确解[J].黑龙江科技学院学报,2006,16(4):255-258. 被引量:1
  • 2岳素芳,马宗立.再生核空间中的求解热传导方程反问题[J].黑龙江科技学院学报,2007,17(4):314-316. 被引量:1
  • 3MOHAMED E G. Comparison of the solutions obtained by adomian decomposition and wavelet-galerkin methods of boundary-value problems[J]. Appl. Math. Comput. ,2006,186 (1):652-664.
  • 4AMARATUNGA K, WILLIAMS J R, QIAN S. Wavelet-galerkin solutions for one-dimensional partial differential equations [ J ]. Int. J. Numer. Meth. Eng. ,1994,37 (16) : 2705 -2 716.
  • 5YEE E. Application of the decomposition method to the solution of the reaction convection-diffusion equation [ J]. Appl. Math. Comput. ,1993,56 (1) : 1 -27.
  • 6Cannon J R. The solution of the heat equation subject to the specification of energy[Jl. Quart Appl Math, 1963, 21: 155-160.
  • 7Chegis R Yu, Chegis R Yu. Numerical solution of a heat conduction p roblem with an integral boundary condition [J]. L itovsk Mat Sb, 1984, 24:209 - 215.
  • 8Ionkin N I. Solution of a boundary value problem in heat conduction theorywith nonlocal boundary conditions[J]. Differential Equations, 1977, 13:294 - 304.
  • 9Ahmad B, Alsaedi A, Alghamdi B S. Analytic approximation of solutions of the forced Dufling e2 quation with integral boundary conditions [J]. Nonlinear Anal, 2008, 9: 1727-1740.
  • 10Benchohra M, Hamani S, Nieto J J. The method of upper and lower solutions for second order dif2 ferential inclusions with integral boundary conditions[J]. Rocky Mountain J Math, 2010, 40: 13-26.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部