期刊文献+

专利领域本体概念语义层次获取 被引量:3

Deriving Concept Semantic Hierarchy of Ontology in Patents
下载PDF
导出
摘要 根据专利领域本体构建的需求,提出一种专利领域本体概念语义层次获取方法。通过分析专利领域技术主题概念在形式化时的构词规律以及上下位关系的表现方式,利用相对修饰度和关联规则识别上下位关系。然后分析上下位关系的特性,总结关系冗余和关系冲突的消除规则,构建出专利领域概念语义层次图。实验结果表明,上下位关系识别方法具有较高的准确率和召回率,构建概念语义层次图的方法取得了较好的关系冗余和关系冲突的消除效果,证实了本文方法的有效性。 For the demand of ontology construction in patent domain, we propose a concept semantic hierarchy induction approach. For this purpose, the work isdiscomposed to two dimensions. First, we analyze the word-formation rules and hierarchical relation presentation forms of technology theme concepts in patent domain. Based on this, a relative decoration based approach and an association rule based approach areproposed to hierarchical relation extraction. Second, characteristics of hyponymy relations areanalyzed to achieve those rules to eliminate redundancies and conflictions in the extracted relation. The experimental result shows that the approach of hierarchical relation extraction can achieve high accuracy and recall rate, the approach of concept semantic hierarchy induction can achieve satisfied elimination result. The resultprovesthe validity of the approach in this paper.
出处 《情报学报》 CSSCI 北大核心 2014年第9期986-993,共8页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金项目“基于本体的专利自动标引研究”(61271304) 北京市教委科技发展计划重点项目暨北京市自然科学基金B类重点项目“面向领域的互联网多模态信息精准搜索方法研究”(KZ201311232037) 北京市属高等学校创新团队建设与教师职业发展计划项目(IDHT20130519)
关键词 专利领域 本体 上下位关系 概念语义层次 patent, domain ontology, hierarchy relationship, concept semantic hierarchy
  • 相关文献

参考文献12

  • 1邵波.企业竞争与反竞争情报中的专利分析研究[J].情报科学,2006,24(2):235-238. 被引量:18
  • 2100004说明书摘要[EB/OL].[2014-03-07].http://WWW.sipo.gov.cn/bgxz/zlsqbg/ty/100004smszy.doc,2010-02-01.
  • 3Buitelaar P, Cimiano P, Magnini B. Ontology Learning from Text: Methods, Evalutation and Applications I J]. Computational Linguistics, 2005,32 ( 4 ) : 569-572.
  • 4胡阿沛,张静,雷孝平,张晓宇.基于文本挖掘的专利技术主题分析研究综述[J].情报杂志,2013,32(12):88-92. 被引量:42
  • 5Jeon J, Lee C, Park Y. How to use patent information to search potential technology partners in open innovation [J]. Journal of Intellectual Property Rights, 2011, 16 (5) : 385-393.
  • 6Sanderson M, Croft B. Deriving concept hierarchies from text[ C ]//Proeeedings of the 22nd annual international ACM SIGIR conference on Researeh and development in information retrieval. ACM, 1999: 206-213.
  • 7S6nchez D, Moreno A. Web-scale taxonomy learning [ C ]//Proceedings of Workshop on Extending and Learning Lexical Ontologies using Machine Learning, ICML05. 2005: 53-60.
  • 8曾元显.bag of words model-词袋模型[EB/OL].[2014-03-15].http://terms.naer.edu.tw/detail/1679006/,2012-10-12.
  • 9HIT-IRLab.同义词词林(扩展版)[DB/OL].http://ir.hit.edu.cn.
  • 10吕立辉,梁维薇,冉蜀阳.基于词林的词语相似度的度量[J].现代计算机,2013(1):3-6. 被引量:15

二级参考文献41

  • 1郭炜强,文军,文贵华.基于贝叶斯模型的专利分类[J].计算机工程与设计,2005,26(8):1986-1987. 被引量:13
  • 2陈达仁,王俊杰,周永铭.由中国专利探讨TFT-LCD专利表现及主要公司技术布局[J].图书情报知识,2006,23(6):96-104. 被引量:6
  • 3谌志群,张国煊.文本挖掘与中文文本挖掘模型研究[J].情报科学,2007,25(7):1046-1051. 被引量:50
  • 4Martin Meyer.What do we Know About Innovation in Nanotech-nology[J].Scientometrics,2007,70(3):779-810.
  • 5Ronen Feldman,Ido Dagan.Knowledge Discovery in TextualDatabases(KDT)[C].In; Proceedings of the First InternationalConference on Knowledge Discovery and Data Mining.Montre-al,Canada,1995:112-117.
  • 6Gabriel Pui Cheong Fung,Jeffrey Xu Yu,Wai Lam.Stock Pre-diction:Integrating Text Mining Approach using Real-TimeNews[C].In:Proceedings of 2003 IEEE International Confer-ence on Computational Intelligence for Financial Engineering.Hong Kong,China,2003,395-402.
  • 7Aaron M Cohen,William RHersh.A Survey of Current Work inBiomedical Text Mining[J].Briefings in Bioinformatics,2005,6(1):57-71.
  • 8Byungun Yoon,Yongtae Park.A Text-mining-based PatentNetwork:Analytical tool for High-technology Trendf J].Journalof High Technology Management Research,2004,15(1):37-50.
  • 9Jeonghwan Jeon,Changyong Lee,Yongtae Park.How to Use Pa-tent Information to Search Potential Technology Partners in OpenInnovation[J].Journal of Intellectual Property Rights,2011,26(5):385-393.
  • 10B Lent,R Agrawal,R Srikant.Discovering Trends in Text Data-bases[C].In:Proceedings of the Third International Conferenceon Knowledge Discovery and Data Mining.Newport Beach,California,1997:227-230.

共引文献73

同被引文献62

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部