期刊文献+

自然增长的半线性次椭圆方程内部H?lder估计

Interior H?lder Estimate to Semilinear Subelliptic Equations Under the Natural Growth
下载PDF
导出
摘要 对于低阶项满足自然增长条件的半线性次椭圆方程有界弱解,通过Moser-Nash迭代和弱Harnack不等式,得到弱解的内部H?lder连续性估计. For the bounded weak solution of a class of semilinear subelliptic equations under the natural growth, we prove an interior Holder continuity estimate by way of establishing the modified Moser-Nash iterations and weak Harnack inequality.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第6期1397-1407,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(11371050)资助
关键词 自然增长 Moser-Nash迭代 弱Harnack不等式 Holder连续估计 Natural growth Moser-Nash iteration Weak Harnack inequality Holder estimate.
  • 相关文献

参考文献18

  • 1Capogna L, Garofalo N. Regularity of minimizers of the calculus of variations in Carnot groups via hy- poellipticity of systems of H/Srmander type. d Eur Math Soc, 2003, 5(1): 1-40.
  • 2F6glein A. Partial regularity results for subelliptic systems in the Heisenberg group. Calc Vat Part Diff Eqs, 2008, 32:1-25.
  • 3Giaquinta M. Introduction to Regularity Theory for Nonlinear Elliptic Systems. Berlin: Birkh~user Verlag, 1993.
  • 4Xu C J, Zuily C. Higher interior regularity for quasilinear subelliptic systems. Calc Var Part Diff Eqs, 1997, 5:323-343.
  • 5Garofalo N, Nhieu D M. Isoperimetric and Sobolev inequalities for Carnot-Carath6odory spaces and the existence of minmal surfaces. Comm Pure Appl Math, 1996, 49(10): 1081-1144.
  • 6Zheng S Z, Feng Z S. Green functions for a class of nonlil~ear degenerate operators with X-ellipticity. Trans Amer Math Soc, 2012, 364(7): 3627-3655.
  • 7H6rmander L. HypoeIIiptic second order differential equations. Acta Math, 1967, 119:147-171.
  • 8Folland G. A fundamental solution for a subelliptic operator. Bull Amer Math Soc, 1973, 79 : 373-376.
  • 9Rothschild L, Stein E. Hypoelliptic operators and nilpotent Lie groups. Acta Math, 1977, 137:247-320.
  • 10Nagel A, Stein E, Wainger S. Balls and metrics defined by vector fields I: basic properties. Acta Math, 1985, 155:103-147.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部