期刊文献+

RELLICH引理的新证明 被引量:4

New Proof of Rellich Lemma
下载PDF
导出
摘要 Rellich引理是电磁波相关反问题理论中非常重要的一个结论,该文的目的是给Rellich引理一个全新的证明,主要采用常微分方程的基本理论以及唯一延拓性质等给出了一个相对较为简洁的证明.该证明中分析了相关方程解的性质,对引理更深层的理解有一定的帮助. Rellich Lemma is a very important part of the electromagnetic related inverse problems theory, and this paper gives a new proof of Rellich Lemma. The proof is much simpler and it mainly uses fundamental theory of ordinary differential equations and unique continuation theory. We studied the properties of the solutions of Hehnholtz equation through the proof.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第6期1435-1439,共5页 Acta Mathematica Scientia
基金 西藏大学青年科研培育基金(ZDPJZK201201)资助
关键词 唯一性 唯一延拓 散射条件 Uniqueness Unique continuation Radiation condition.
  • 相关文献

参考文献10

  • 1John M Ball, Yves Capdeboscq, Basang Tsering-Xiao MaxwelFs equations with piecewise regular coefficients. Sciences, 2012, 22(11), ID: 1250036.
  • 2On uniqueness for time harmonic anisotropic Mathematical Models and Methods in Applied Basang Tsering-Xiao. Electromagnetic Inverse Problems for Nematic Liquid Crystals. Oxford: Oxford University, 2011.
  • 3Atkinson F V. On Sommerfeld radiation condition. Philosophical Magazine, 1949, 305:645 651.
  • 4Benz U. Arnold Sommerfeld. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1975.
  • 5Mjller C. Foundations of the Mathematical Theory of Electromagnetic Waves. Berlin: Springer, 1969.
  • 6Nedelec J C. Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. New York: Springer Verlag, 2001.
  • 7Schot S H. Eighty years of Sommerfeld.s radiation condition. Historia Mathematica, 1992, 19(4): 385 401.
  • 8Cakoni F, Colton D L. Qualitative Methods in Inverse Scattering Theory: An Introduction. New York: Springer Verlag, 2006.
  • 9Colton D L, IKress R. Inverse Acoustic and Electromagnetic Scattering Theory. New York: Springer Verlag 1998.
  • 10Miranker W L. Uniqueness and representations theorems for solutions of Au q- k2u = 0. J Math Meeh 1957, 6:847-858.

同被引文献3

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部