期刊文献+

应用诱骗态的光子轨道角动量测量设备无关量子密钥分发协议的研究 被引量:9

Study on Decoyed Measurement Device Independent Quantum Key Distribution Protocol Using Orbital Angular Momentum
下载PDF
导出
摘要 轨道角动量作为量子信息的一种载体,可应用于测量设备无关量子密钥分发协议中,来消除发送端和接收端间的基校准。诱骗态技术可以消除量子密钥分发协议采用弱相干光源时易被分裂攻击的缺陷。本文将轨道角动量态、测量设备无关方案和诱骗态方案相结合,设计一种基于高效轨道角动量分离方法的诱骗态光子轨道角动量测量设备无关量子密钥分发协议方案,避免了极化方案中对极化基的依赖性缺陷,提高了密钥速率,本文给出了该方案密钥速率的理论推导,并分别对采用无限个诱骗态和两个诱骗态时该方案密钥速率进行了仿真。研究结果表明,在相同条件下,基于轨道角动量的MDI-QKD协议方案比极化方案密钥速率更高。 Orbital angular momentum(OAM) as a carrier of quantum information,can be applied to the measurement deviceindependent quantum key distribution protocols(MDI-QKD),to eliminate the basis-dependent flaw. Decoy state used in quantum key distribution can eliminate photon splitting attack when the protocol uses weak coherent source. In this paper,an OAMMDI-QKD protocol was proposed,which could avoid the basis-dependent flaw,and increased the key generation rate. The key generation of the decoy-state OAM-MDI-QKD scheme using infinite decoy state and two decoy state was deduced. The results show that the key rate of the proposed OAM-MDI-QKD protocol is higher than that using polarized state.
出处 《信号处理》 CSCD 北大核心 2014年第11期1275-1278,共4页 Journal of Signal Processing
基金 国家自然科学基金(61271238) 教育部高等学校博士学科点专项科研基金(20123223110003) 江苏省高校自然科学研究项目资助(11KJA510002) 江苏高校优势学科建设工程资助项目
关键词 轨道角动量 测量设备无关量子密钥分发 密钥生成速率 诱骗态 orbital angular momentum measurement device independent quantum key distribution key generation rate decoy state
  • 相关文献

参考文献12

  • 1Bennet C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [ C ]//in Proceedings of IEEE International Conference Compute, Systems, and Signal Processing Bangalore, India, December 9-12, 1984:175-179.
  • 2Lo H K, Curty M, Qi B. Measurement-device-independ- ent quantum key distribution [ J]. Physical Review Let- ters, 2012, 108(13): 130503.
  • 3Tamaki K, Lo H K, Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw[ J]. Physical Review A, 2012, 85(4) : 042307.
  • 4Xu F, Curry M, Qi B, et al. Practical aspects of meas- urement-device-independent quantum key distribution [ J ]. New Journal of Physics, 2013, 15 ( 11 ) : 113007.
  • 5Tang Z. et al. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution [ EB/OL ]. http://xxx, lanl. gov/quant-ph/ arXiv : 1306. 6134.
  • 6Liu Y, Chen T Y, Wang L J, et al. Experimental meas- urement-device-independent quantum key distribution[ J]. Physical Review Letters, 2013, 111 (13) : 130502.
  • 7Zhao S M, Gong L Y, et al. A large-alphabet Quantum Key Distribution Protocol Using Orbital Angular Momentum En- tanglement[J]. Chin. Phys. kett., 2013, 30(6): 060305.
  • 8Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [ J ]. Physical Re- view Letters, 2003, 91 (5) : 057901.
  • 9Ekert A, Ericsson M, Hayden P, et al. Geometric quan- tum computation [ J ]. Journal of Modern Optics, 2000, 47(14-15) : 2501-2513.
  • 10Hong C K, Ou Z Y, Mandel L. Measurement of subpico- second time intervals between two photons by interference [J]. Physical Review Letters, 1987, 59(18) : 2044.

同被引文献44

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部