期刊文献+

MME频谱感知算法能量效率优化分析

Optimization Analysis of Energy Efficiency for MME Spectrum Sensing Algorithm
下载PDF
导出
摘要 绿色通信是未来无线通信发展的必然趋势,为了提高认知无线网络频谱感知算法的能量效率以及算法稳定性,实现低功耗绿色通信,该文在噪声不确定的环境下分析了基于特征值的最大最小特征值(MME,MaximumMinimum Eigenvalue)频谱感知算法的能量效率,并利用黄金分割优化算法获得了使能量效率最大化的最优感知时间。理论分析和仿真结果表明,在噪声不确定的情况下,基于特征值的MME感知算法的能量效率要明显优于传统的能量(ED)检测算法,且MME感知算法不受噪声不确定性的影响,在低信噪比下具有更稳定的感知性能。 Green Communications is an inevitable trend of future development of wireless communication. In order to enhance the stability and efficiency of spectrum sensing algorithm and promote low-power Green Communications,the energy efficiency of eigenvalue-based MME(Maximum-Minimum Eigenvalue) algorithm under noise uncertainty is analyzed in this paper and the optimal sensing time through the golden algorithm is found. Theoretical analysis and computer simulation results show that eigenvalue-based MME detection algorithm is obviously better than energy detection(ED) with the noise uncertainty and has a more stable sensing performance at low signal to noise ratio. Meanwhile,the results also indicate that noise uncertainty almost has no effect on MME.
出处 《信号处理》 CSCD 北大核心 2014年第11期1375-1380,共6页 Journal of Signal Processing
基金 国家自然科学基金(61201164 61201165 61271240) 南京邮电大学宽带无线通信与传感网技术教育部重点实验室开放研究基金(NYKL201104) 东南大学移动通信国家重点实验室开放研究基金(2011D05) 高等学校博士学科点专项科研基金(20113223120002) 江苏省高校自然科学基金(11KJB510016) 中国博士后科学基金(2013M531392) 江苏省博士后基金(1201014C) 南京邮电大学科研基金(NY210072 NY211053)
关键词 认知无线电 频谱感知 能量效率 特征值 能量检测 cognitive radio spectrum sensing energy-efficient eigenvalue energy detection
  • 相关文献

参考文献12

  • 1Bianzino A P, Chaudet C, Rossi D, et al. A survey of green networking research [ J ]. Communications Surveys & Tutorials, IEEE, 2012, 14( 1 ) : 3-20.
  • 2Gur G, Alagoz F. Green wireless communications via cog- nitive dimension: an overview [ J ]. Network, IEEE, 2011, 25(2) : 50-56.
  • 3Liang Y C, Chen K C, Li G Y, et al. Cognitive radio networking and communications: An overview [ J ]. Ve- hicular Technology, 1EEE Transactions on, 2011, 60 (7) : 3386-3407.
  • 4Cabric D, Mishra S M, Brodersen R W. Implementation is- sues in spectrum sensing for cognitive radios [ C ]//Signals, systems and computers, 2004. Conference record of the thir- ty-eighth Asilomar conference on. IEEE, 2004, 1 : 772-776.
  • 5Zhang W, Mallik R K, Letaief K. Optimization of coop- erative spectrum sensing with energy detection in cogni- tive radio networks[J]. Wireless Communications, IEEE Transactions on, 2009, 8( 12): 5761-5766.
  • 6Peh E C Y, Ying-Chang Liang, Yong Liang Guan, et al. Energy-Efficient Cooperative Spectrum Sensing in Cogni- tive Radio Networks [ C ] //Global Telecommunications Conference ( GLOBECOM 2011 ) , 2011 IEEE, 5-9 Dec. 2011 : 1-5.
  • 7Ahhunibat S, Palacios R, Granelli F. Energy-efficient spec- trum sensing in Cognitive Radio Networks by coordinated re- duction of the sensing users[ C]//Communications (ICE), 2012 IEEE International Conference on. IEEE, 2012: 1399- 1404.
  • 8Ahhunibat S, Sucasas V, Marques H, et al. On the Trade- Off Between Security and Energy Efficiency in Cooperative Speetnlm Sensing for Cognitive Radio [ J ]. Conmaunications letters, IEEE, 2013, 17(8): 1564-1567.
  • 9Zeng Y, Liang Y C. Eigenvalue-based spectrum sensing algorithms for cognitive radio [ J ]. Communications, IEEE Transactions on, 2009, 57(6) : 1784-1793.
  • 10Liang Y C, Pan G, Zeng Y. On the performance of spec- trum sensing algorithms using multiple antennas [ C ] // Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE. IEEE, 2010: 1-5.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部