期刊文献+

距离空间中具广义循环吸引子的最佳近似对的逼近(英文)

APPROXIMATE BEST PROXIMATE PAIRS WITH GENERALIZED CYCLIC CONTRACTIONS IN METRIC SPACES
下载PDF
导出
摘要 本文考虑单一或二个映射的邻近时的逼近.我们应用对单一映射不动点的逼近并讨论邻近对的存在性.定义了距离空间中广义循环吸引子并获得有关近似最佳邻近对的存在性结果. In this paper we consider approximate proximity pair for a single map and for two maps.We apply approximate fixed point for a map and discuss the existence of approximate proximity pair.We also define generalized cyclic contractions in metric spaces and obtain some results on the existence of approximate best proximity pairs for them.
出处 《南京大学学报(数学半年刊)》 CAS 2014年第2期165-173,共9页 Journal of Nanjing University(Mathematical Biquarterly)
基金 Supported by intelligent robust research center of Yazd University
关键词 近似邻近对 最佳邻近 广义循环压缩 近似不动点 approximate pair proximity best proximity generalized cyclic contraction approximate fixed point
  • 相关文献

参考文献9

  • 1Beer G and Pai D V. ProximM Maps, Prox Maps and Coincidence Points. Numerical Functional Analysis and Optimization, 1990, 11(5-6): 429-448.
  • 2Eldred A A and Veeramani P. Existence and Convergence of Best Proximity Points. J. Math. Anal. Appl., 2006, 323(2): 1001-1006.
  • 3Espnola R and Kirk W A. Fixed Points and Approximate Fixed Points in Product Spaces. Taiwan Residents J. Math., 2001, 5(2): 405-416.
  • 4Fan K. Extensions of Two Fixed Point Theorems of F. E. Browder. Mathematische Zeitschrift, 1969, 112: 234-240.
  • 5Kim W K and Lee K H. Corrigendum to Existence of Best Proximity Pairs and Equilibrium Pairs. J. Math. Anal. Appl., 2006, 316: 433-446.(DOI:10.1016/j.jmaa.2005.04.053), Journal of Mathematical Analysis and Applications, 2007, 329(2): 1482-1483.
  • 6Kirk W A, Reich S and Veeramani P. Proximinal Retracts and Best Proximity Pair Theorems. Numerical Ynctional Analysis and Optimization, 2003, 24(7-8): 851-862.
  • 7Mohsenalhosseini S A M, Mazaheri H and Dehghan M A. Approximate Best Proximity Pairs in Metric Space. Abstract and Applied Analysis, Volume 2011, Article ID 596971, 9 pages.
  • 8Vetrivel V, Veeramani P and Bhattacharyya P. Some Extensions of Fan Best Approximation The- orem. Numerical Functional Analysis and Optimization, 1992, 13(3-4): 397-402.
  • 9Wlodarczyk K, Plebaniak R and Banach A. Best Proximity Points for Cyclic and Noncyclic Set- valued relatively Quasi-asymptotic Contractions in Uniform Spaces. Nonlinear Analysis: Theory, Methods and Applications, 2009, 70(9): 3332-3341.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部