期刊文献+

基于集群创新合作网络的知识创新与扩散过程建模及仿真研究 被引量:16

Modeling and Simulation Analysis of Process of Knowledge Innovation and Diffusion Based on Industry Cluster Innovation Network
下载PDF
导出
摘要 基于集群创新合作网络的知识创新和知识扩散过程是集群企业实现创新的关键。为了揭示集群创新合作网络中知识增长绩效的演化规律,探讨不同网络中知识增长绩效的差异及其形成原因,论文构建了知识创新与扩散的过程模型,以东北三省新能源汽车集群创新合作网络为例,运用复杂网络理论和仿真方法进行分析。研究发现,集群创新合作网络的整体知识水平呈现先递增后递减的演化规律;知识增长的演化过程存在突变点,突变时期不同网络中企业知识水平分化的情况决定不同网络知识增长绩效的差异性;知识扩散约束条件是知识创新与扩散过程的关键;实际网络并非知识创新与扩散的最优网络,无标度网络具有知识增长的绩效优势;hub结构和适度的节点度值分布差异性有利于提升知识增长绩效。 The process of knowledge innovation and diffusion in the industry cluster innovation network is the key for firms to achieve innovation .To explore the evolution rule of the performance of knowledge in the network , and to analyze the difference of performance of knowledge among different networks and its cause , this paper pro-poses a process model of knowledge innovation and diffusion .Taking new energy auto industry cluster network in three northeastern provinces as a case , this paper researches it using the complex network theory and the method of simulation.This research shows that the growth rate of overall knowledge increases firstly and then decreases . There is a saltation point in the process of knowledge growth , and the differentiation of firms ’ knowledge among different networks in that saltation period controls the diversity of performance of knowledge growth .The con-straints of knowledge diffusion are the key to the process of knowledge innovation and diffusion .Scale-free net-work has a relative advantage of the performance of knowledge growth when the real industry cluster innovation network is not the optimal network for knowledge innovation and diffusion .Hub structure and moderate degree of variance from degree distribution are conducive to improving the performance of knowledge growth .This paper shows that , to improve the performance of knowledge innovation and diffusion in the network , it should be done that optimizing the network structure , adjusting the differentiation of firms ’ cooperative relationship , controlling the division of firms ’ knowledge quantity in the saltation period and balancing the constraints of knowledge diffu-sion in the network .
出处 《运筹与管理》 CSSCI CSCD 北大核心 2014年第6期257-265,共9页 Operations Research and Management Science
基金 国家自然科学基金项目(70903015) 基于知识管理的科技成果转化机理 模型及政策研究
关键词 创新合作网络 知识扩散 知识创新 过程模型 新能源汽车产业集群 innovation cooperation network knowledge diffusion knowledge innovation process model new energy auto industry cluster
  • 相关文献

参考文献19

  • 1王文平,张苏荣.产业集群网络演化中知识转移研究[J].管理学报,2011,8(9):1372-1377. 被引量:15
  • 2杨玉兵,潘安成.强联系网络、重叠知识与知识转移关系研究[J].科学学研究,2009,27(1):25-29. 被引量:27
  • 3Collins J D, Hitt M A. Leveraging tacit knowledge in alliances: the importance of using relational capabilities to build and leverage relational capital[ J]. Journal of Engineering and Technology Management, 2006, 23 (3) : 147-167.
  • 4曹兴,宋娟.技术联盟知识转移影响因素的实证分析[J].科研管理,2011,32(2):1-9. 被引量:26
  • 5Li C, Hsieh C. The impact of knowledge stickiness on knowledge transfer implementation, internalization, and satisfaction for multinational corporations [ J ]. International Journal of Information Management, 2009, 29 (6) : 425-435.
  • 6Fritsch M, Kauffeld-Monz M. The impact of network structure on knowledge transfer: an application of social network analysis in the context of regional innovation networks [ J ]. The Annals of Regional Science, 2010, 44 (1): 21-38.
  • 7Houghton S M, Smith A D, Hood J N. The influence of social capital on strategic choice: an examination of the effects of external and internal network relationships on strategic complexity[ J]. Journal of Business Research, 2009, 62 (12) : 1255- 1261.
  • 8Owen-Smith J, Powell W W. Knowledge networks as channels and conduits: the effects of spillovers in the boston biotechnology community [ J ]. Organization science, 2004, 15 ( 1 ) : 5-21.
  • 9Cowan R, Jonard N. Network structure and the diffusion of knowledge[ J]. Journal of economic Dynamics and Control, 2004, 28(8) : 1557-1575.
  • 10Kim H, Park Y. Structural effects of R&D collaboration network on knowledge diffusion performance[ J]. Expert Systems with Applications, 2009, 36 (5) : 8986- 8992.

二级参考文献183

共引文献242

同被引文献220

引证文献16

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部