期刊文献+

A note on approximation to subfractional brownian motion

A note on approximation to subfractional brownian motion
下载PDF
导出
摘要 Abstract:Subfractional Brownian motion can be decomposed in distribution as a sum of independent fractional Brownian motion and a centered Gaussian process with absolutely continuouspaths.This paper proves an approximations of subfractional Brownian motion using the decomposition. Subfractional Brownian motion can be decomposed in distribution as a sum of independent fractional Brownian motion and a centered Gaussian process with absolutely continuouspaths.This paper proves an approximations of subfractional Brownian motion using the decomposition.
出处 《安徽工程大学学报》 CAS 2014年第4期85-91,共7页 Journal of Anhui Polytechnic University
基金 supported by the National Natural Science Foundation of China(11271020) the Natural Science Foundation of Anhui Province(1208085MA11) the Key Natural Science Foundation of the Anhui Educational Committee(KJ2012ZD01) the Philosophy and Social Science Planning Foundation of Anhui Province(AHSK1112D128)
关键词 随机图 复杂网络 排它过程 生成元 subfractional brownian motion fractional brownian motion weak convergence poisson process.
  • 相关文献

参考文献1

二级参考文献15

  • 1Yves Meyer,Fabrice Sellan,Murad S. Taqqu.Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion[J]. The Journal of Fourier Analysis and Applications . 1999 (5)
  • 2Michel Talagrand.Multiple points of trajectories of multiparameter fractional Brownian motion[J]. Probability Theory and Related Fields . 1998 (4)
  • 3Murad S. Taqqu.Weak convergence to fractional brownian motion and to the rosenblatt process[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete . 1975 (4)
  • 4Ayache A,Cohen S,Véhel J L.The covariance structure of multifractional Brownian motion with application to long range dependence. IEEE International Conference on Acoustics Speech and Signal Processing . 2000
  • 5Boufoussi B,Dozzi M,Marty R.Local time and Tanaka formula for a Volterra-type multifractional Gaussian process. Bernoulli . 2010
  • 6Enriquez N.A simple construction of the fractional Brownian motion. Stochastic Processes and Their Applications . 2004
  • 7Lévy-Véhel J,Peltier R F.Multifractional Brownian motion: Definition and preliminary results. INRIA Technical Report RR-2645 . 1996
  • 8Stroock D.Topics in Stochcastic Di-erential Equations. . 1982
  • 9Benassi,A.,Jaffard,S,Roux,D.Elliptic Gaussian random processes. Revista Matematica Iberoamericana . 1997
  • 10Delgado,R.,Jolis,M.Weak approximation for a class of Gaussian processes. Journal of Applied Probability . 2000

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部