摘要
为改善认知无线电的自适应参数调整功能,提出了基于混合的离散二进制粒子群算法对无线电系统待优化的目标函数进行寻优,针对多载波系统对算法性能进行了仿真分析。结果表明,基于混合的离散二进制粒子群算法的认知决策引擎在收敛速度、收敛精度和算法稳定度方面都有所提高。
To improve the capability of the self - adaptive parameter adjustment in cognitive radio, an algorithm based on the mixed binary particle swarm optimization (PSO) is proposed, in which the multiple target functions of the radio system are optimized. A multi - cartier system is used for the performance analysis through computer simulation. The results show that the proposed cognitive radio decision engine has better convergence, precision and stability.
出处
《西南科技大学学报》
CAS
2014年第4期52-55,61,共5页
Journal of Southwest University of Science and Technology
基金
国防科工委民用航天技术研究项目(13zxtk07)
关键词
认知无线电
BPSO
改进的BPSO
混合的BPSO
认知决策引擎
Cognitive radio
Binary particle swarm optimization
Modified binary particle swarm optimization
Mixed binary particle swarm optimization
Cognitive decision engine