期刊文献+

统计机器翻译领域自适应综述 被引量:7

Domain Adaptation for Statistical Machine Translation
下载PDF
导出
摘要 统计机器翻译的准确性在很大程度上取决于翻译建模的质量,而翻译建模往往依赖于数据的分布。通常,大多数机器学习任务会假设训练数据和测试数据是独立同分布的,然而在实际的系统中,这种假设未必成立。因此,为了达到性能的最优,需要根据数据分布的情况对模型进行适当的迁移。近年来,领域自适应技术成为统计机器翻译研究中的一个热点话题,目的在于解决训练数据和测试数据的领域分布不一致问题。本文介绍了几类流行的统计机器翻译领域自适应方法,并对未来的研究提出一些展望。 Statistical Machine Translation (SMT) depends largely on the performance of translation modeling, which fur- ther relies on data distribution. Usually, many machine learning tasks assume that the data distributions of training and tes- ting domains are similar. However, this assumption does not hold for real world SMT systems. Therefore, the researchers need to adapt the models according to the data distribution in order to optimize the performance. Recently, domain adapta- tion is an active topic in SMT and aims to alleviate the domain mismatch between training and testing data. This paper in- troduces several popular methods in domain adaptation for statistical machine translation and discusses some future work in this area.
作者 崔磊 周明
出处 《智能计算机与应用》 2014年第6期31-34,共4页 Intelligent Computer and Applications
关键词 统计机器翻译 领域自适应 Statistical Machine Translation Domain Adaptation
  • 相关文献

同被引文献73

  • 1孙致礼.我译《傲慢与偏见》[J].解放军外国语学院学报,1991,14(4):58-62. 被引量:10
  • 2孙茂松,王洪君,李行健,富丽,黄昌宁,陈松岑,谢自立,张卫国.《信息处理用词汇研究》九五项目结题汇报 信息处理用现代汉语分词词表[J].语言文字应用,2001(4):84-89. 被引量:24
  • 3张政.机器翻译难点所在[J].外语研究,2005,22(5):59-62. 被引量:29
  • 4简·奥斯汀.傲慢与偏见[M].上海:上海文艺出版社,1990.
  • 5中国科学技术情报研究所.汉语主题词表[M].科学技术文献出版社,1991:1-18.
  • 6简·奥斯汀.傲慢与偏见[M].王科一.译.上海:上海译文出版社,1980.
  • 7Koehn P,Och F J,Marcu D.Statistical Phrase-Based Translation [C]//Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-volume,North American,2003:127-133.
  • 8Eck M,Vogel S,Waibel A.Low cost portability for statistical machine translation based on n-gram coverage [J].Proceedings of Mtsummit X,2005.
  • 9Zhao B,Eck M,Vogel S.Language model adaptation for statistical machine translation with structured query models [C]//Proceedings of the 20th international conference on Computational Linguistics.Association for Computational Linguistics,the University of Geneva,Switzerland,2004:411.
  • 10Lii Y,Huang J,Liu Q.Improving Statistical Machine Translation Performance by Training Data Selection and Optimization.[C]// EMNLP-GoNLL 2007,Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning,June 28-30,2007,Prague,Czech Republic,2007:343-350.

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部