期刊文献+

云计算环境下任务调度研究综述 被引量:7

Review of Task Scheduling Research in Cloud Computing
下载PDF
导出
摘要 云计算是一种新的商业计算模型。将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算资源、数据资源、存储资源和应用服务资源等。大数据时代,云计算的另一个特点是其将处理大规模的任务。如何实现在满足用户Qo S的前提条件下,对海量任务进行高效调度并对大量云资源进行合理的分配,使得云任务占用尽量少的云资源是云计算领域的一个研究热点。主要论述了云计算环境下任务调度的目标和新特性,分析总结了云计算任务调度的研究现状并以调度目标为侧重点归纳总结了四类调度策略,即侧重性能的调度、侧重服务质量的调度、侧重经济原则的调度和侧重能耗优化的调度,给出了云任务调度的研究展望,为下一步更深入的研究指出方向。 Cloud computing is a new business computing model. It distributed computing tasks in a large resource pool con- sisting of many computers, make a variety of applications can obtain computing resources, data resources, storage resources and application services and other resources as needed. Big Data era, another characteristic of cloud computing is that it will deal with a massive task. How to achieve massive task for efficient scheduling and rational allocation of cloud resources under the precondition user QoS, making the task of occupying as little cloud computing resources as possible is a research hotspot. The paper discusses the objectives and new features of task scheduling under the cloud computing environment , analyzes and summarizes the research status of cloud computing task scheduling and summarizes four scheduling policy ac- cording to schedule objectives. Simuhaneously, the paper gives prospect of cloud task scheduling for the next direction of more in -depth study noted.
出处 《智能计算机与应用》 2014年第6期75-77,共3页 Intelligent Computer and Applications
基金 哈尔滨市科技局项目(2014RFQXJ073)
关键词 云计算 任务调度 能耗优化 用户行为 Cloud Computing Task Scheduling Energy Optimization User Behavior
  • 相关文献

参考文献11

二级参考文献112

  • 1张晓杰,孟庆春,曲卫芬.基于蚁群优化算法的服务网格的作业调度[J].计算机工程,2006,32(8):216-218. 被引量:17
  • 2潘达儒,袁艳波.一种基于AntNet改进的QoS路由算法[J].小型微型计算机系统,2006,27(7):1169-1174. 被引量:6
  • 3杜晓丽,蒋昌俊,徐国荣,丁志军.一种基于模糊聚类的网格DAG任务图调度算法[J].软件学报,2006,17(11):2277-2288. 被引量:48
  • 4MC EVOY G V, SCHULZE B. Using clouds to address grid limitations[C]//MGC'08. Belgium: Leuven Press, 2008.
  • 5IAN F, YONG Z. IOAN R, et al. Cloud computing and grid computing 360 Degree compared[C]//Grid Computing Environments Workshop. [s.l.]: IEEE, 2008.
  • 6HUAN L, DAN O. Accenture technology labs gridBatch: Cloud computing for large-scale data-Intensive batch[C] //CCGRID 2008. Shanghai:[s. n. ], 2008.
  • 7Amazon web services (TM). Amazon Elastic Compute Cloud (Amazon EC2)[EB/OL]. [2008-10-24]. http: //aws. amazon.com/ec2. 2008.
  • 8Amazon web services (TM). Amazon Simple Storage Service ( Amazon S3 ) [ EB/OL].[ 2008-10-24]. http:// aws. amazon.com/s3.
  • 9YANG C H, DASDAN A, HSIAO R L, et al. Map-reduce-merge. Simplified relational data processing on large elusters[C]//International conference on management of data. CA, USA: ACM SIGMOD, 2007.
  • 10GHEMAWAT S, GOBLOFF H, LEUNG S T. The google file system[C]//19th ACM Symposiun on Operating System 2003. New York: Association for Computing Machinery, 2009.

共引文献462

同被引文献55

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部