期刊文献+

回火温度对Mn-Ni钢亚稳奥氏体形貌及其力学性能的影响 被引量:2

Effects of Tempering Temperature on Morphology of Metastable Austenite and Mechanical Properties of Mn-Ni Steel
原文传递
导出
摘要 利用了X射线衍射仪(XRD)、电子背散射衍射(EBSD)和透射电子显微镜(TEM)研究了回火温度对一种Mn-Ni钢亚稳奥氏体形貌及其力学性能的影响。结果表明,随着回火温度的升高,室温亚稳奥氏体的体积分数逐渐升高。当回火温度为600和625℃时,亚稳奥氏体主要以片层状在回火马氏体板条间析出,且排列方向与周围的马氏体板条平行,这种片层状亚稳奥氏体分布较为均匀,尺寸较小,约为60~100 nm,且稳定性较高;当回火温度为650℃时,试验钢中出现尺寸较大的块状奥氏体在回火马氏体界面的交叉处不均匀析出。分析表明,块状奥氏体有利于提高钢的塑性,不利于改善钢的低温韧性;而片层状奥氏体能大幅度的改善钢的低温韧性。 Effects of tempering temperature on morphology of metastable austenite and mechanical properties of Mn-Ni steel were investigated by X-ray Diffraction (XRD), Electron Back Scattering Diffraction (EBSD) and Transmission Elec-tron Microscope(TEM). The results show that the volume fraction of metastable austenite at room temperature increased with the increase of tempering temperature. When tempering temperature was 600 and 625℃, metastable austenite mainly precipitated in the shape of thin film along the lath boundaries of tempered martensite, paralleling to the surrounding martens-itic laths. This thin film metastable austenite had a dense distribution, with the thickness ranging from 60 to 100 nm, and had a good stability;when the tempering temperature was 650℃, thin film metastable austenite decreased dramatically and large block metastable austenite precipitated unevenly on the intersections of grain boundaries of tempered martensite. Analysis in-dicates that block metastable austenite is beneficial to the ductility of test steel, but it goes against to improving low tempera-ture toughness;while thin film metastable austenite can improve low temperature toughness significantly.
出处 《钢铁》 CAS CSCD 北大核心 2014年第12期59-64,共6页 Iron and Steel
基金 国家重点基础研究发展计划(973计划)资助项目(2010CB63085)
关键词 亚稳奥氏体形貌 Mn-Ni钢 塑性 韧性 morphology of metastable austenite Mn-Ni steel ductility toughness
  • 相关文献

参考文献13

  • 1Thomas G. Retained Austenite and Tempered Martensite Embrit- tlement[J]. Metallurgical Transactions: A, 1978, 9(3): 439.
  • 2ZHANG K, ZHANG M, GUO Z, et al. A New Effect of Re- tained Austenite on Ductility Enhancement in High-Strength Quenching-Partitioning-Tempering Martensitic Steel[J]. Materi- als Science and Engineering: A, 2011,528(29): 8486.
  • 3Fultz B, Kim J I, Kim Y H, et al. The Stability of Precipitated Austenite and the Toughness of 9Ni Steel[J]. Metallurgical Transactions: A, 1985, 16(12): 2237.
  • 4WANG Y, ZHANG K, GUO Z, et al. A New Effect of Retained Austenite on Ductility Enhancement in High Strength Bainitic Steel[J]. Materials Science and Engineering: A, 2012, 552: 288.
  • 5张弗天 王景韫 郭蕴宜.Ni9钢中的回转奥氏体与低温韧性.金属学报,1984,20(6):405-410.
  • 6Morris J W, Guo Z, Krenn C R, et al. The Limits of Strength and Toughness in Steel[J]. ISIJ International, 2001, 41(6): 599.
  • 7Yue-hui Yang Qing-wu Cai Di Tang Hui-bin Wu.Precipitation and stability of reversed austenite in 9Ni steel[J].International Journal of Minerals,Metallurgy and Materials,2010,17(5):587-595. 被引量:14
  • 8Sun S, Pugh M. Manganese Partitioning in Dual-Phase Steel During Annealing[J]. Materials Science and Engineering: A, 2000, 276(1): 167.
  • 9De Moor E, Matlock D K, Speer J G, et al. Austenite Stabiliza- tion Through Manganese Enrichment[J]. Scripta Materialia, 2011, 64(2): 185.
  • 10Kim J I, Kim H J, Morris J W. The Role of the Constituent Phas- es in Determining the Low Temperature Toughness of 5.5Ni Cryogenic Steel[J]. Metallurgical Transactions: A, 1984, 15(12): 2213.

二级参考文献3

共引文献32

同被引文献30

  • 1单体坤,张卫刚,李淑慧,沈丹平.应力状态对TRIP钢残余奥氏体稳定性的影响[J].上海交通大学学报,2006,40(10):1691-1693. 被引量:12
  • 2B. Fultz, J.I. Kim, Y. H. Kim, H. J. Kim, G. O. Fior, J. W. Morris, The stability of precipitated austenite and the toughness of 9Ni steel, Metallurgical Transactions A, 16(12), 2237(1985).
  • 3B. Fultz, J.W. Morris, A Mrssbauer spectrometry study of the me- chanical transformation of precipitated austenite in 6Ni steel, Metal- lurgical Transactions A, 16(2), 173(1985).
  • 4J. W. Morris, Jr., Z. Guo, C. R. Krenn, Y.-H. Kim, The limits of strength and toughness in steel, ISIJ International, 41(6), 599(2001).
  • 5J. Huang, W.J. Poole, M. Militzer, Austenite formation during inter- critical annealing, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 35A(11), 3363(2004).
  • 6YANG Yuehui, CAI Qingwu, TANG Di, WU Huibin, Precipitation and stability of reversed austenite in 9Ni steel, International Journal of Minerals, Metallurgy and Materials, 17(5), 587(2010).
  • 7S. J. Wu, G. J. Sun, Q. S. Ma, Q. Y. Shen, L. Xu, Influence of QLT treatment on mierostrueture and mechanical properties of a high nickel steel, Journal of Materials Processing Technology, 213(1), 120(2013).
  • 8Emmanuel De Moor, David K. Matlock, John G. Speer, Matthew J. Merwin, Austenite stabilization through manganese enrichment, Seripta Materialia, 64(2), 185(2011).
  • 9LI Lin, GAO Yi, ZHU Naqiong, HE Yanlin, LIU Rendong , HE Zhongping, SHI Wen, ZHANG Mei, Technology for high perfor- mance TRIP steel, Science China Technological Sciences, 55(7), 1823 (2012).
  • 10Y. K. Lee, H. C. Shin, Y. C. Jang, S. H. Kim, C. S. Choi, Effect of isothermal transformation temperature on amount of retained ans- tenite and its thermal stability in a bainitic Fe-3% Si-0.45% C-X steel, Scripta Materialia, 47(12), 805(2002).

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部