摘要
四点插值细分法已广泛应用于几何造型及其相关领域。通过估计若干次细分后的点与控制多边形之间距离及细分后控制多边形的边长,推导了四点插值细分法的极限曲线与其初始控制多边形之间的距离上界。理论分析和计算实例表明,该距离上界优于已有的距离上界。
The four-point subdivision scheme is wildly used in geometric modeling and related fields. By estimating the distance between the points and the control polygon and the length of the edges of control polygon after some subdivision steps, we get some bounds of the distance between the limit curves of four-point subdivision scheme and its control polygon. Theoretical analysis and calculation examples show that our distance bound is better than existing one.
出处
《杭州电子科技大学学报(自然科学版)》
2014年第6期31-35,共5页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家自然科学基金资助项目(61003194
61370166)
关键词
四点细分法
曲线造型
距离估计
four- point subdivision scheme
curve modeling
distance estimation