期刊文献+

四点细分法极限曲线与控制多边形的距离估计

Estimating the Distance between the Limit Curves of Four-point Subdivision Scheme and Its Control Polygon
下载PDF
导出
摘要 四点插值细分法已广泛应用于几何造型及其相关领域。通过估计若干次细分后的点与控制多边形之间距离及细分后控制多边形的边长,推导了四点插值细分法的极限曲线与其初始控制多边形之间的距离上界。理论分析和计算实例表明,该距离上界优于已有的距离上界。 The four-point subdivision scheme is wildly used in geometric modeling and related fields. By estimating the distance between the points and the control polygon and the length of the edges of control polygon after some subdivision steps, we get some bounds of the distance between the limit curves of four-point subdivision scheme and its control polygon. Theoretical analysis and calculation examples show that our distance bound is better than existing one.
出处 《杭州电子科技大学学报(自然科学版)》 2014年第6期31-35,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(61003194 61370166)
关键词 四点细分法 曲线造型 距离估计 four- point subdivision scheme curve modeling distance estimation
  • 相关文献

参考文献7

  • 1Dyn N, David L, John A G. A 4 -point interpolatory subdivision scheme for curve design[ J]. Computer Aided Geometric Design, 1987,4 (4) : 257 - 268.
  • 2Sabin M A. Recent progress in subdivision: a survey[ C]. Berlin: Springer,2005:203 -230.
  • 3Cai Z J. Modified four-point scheme and its application [ J ]. Computer Aided Geometric Design, 1998,15 (3) :251 -260.
  • 4Jin J R, Wang G Z. A non-uniform 4-point interpolatory subdivision scheme to construct curve[ J]. Applied Mathematics A Journal of Chinese Universities,2000,15 ( 1 ) :97 - 100.
  • 5江雷,郭德贵.四点插值细分格式的改进[J].烟台大学学报(自然科学与工程版),2002,15(3):171-176. 被引量:3
  • 6赵宏庆,彭国华,叶正麟.改进四点细分法及其应用[J].计算机科学,2006,33(6):239-241. 被引量:1
  • 7Dyn N, Floater M S, Hormann K. Four-point curve subdivision based on iterated chordal and centripetal parameterizations[J]. Computer Aided Geometric Design,2009,26(3) :279 -286.

二级参考文献4

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部