期刊文献+

多基线干涉层析SAR提取森林树高方法研究 被引量:3

Approach for Forest Height Extraction Using Multi-baseline Interferometric Tomographic SAR
下载PDF
导出
摘要 应用瑞典Raminstorp研究区Bio SAR 2007 P-波段多基线In SAR数据,研究了基于多基线干涉SAR数据的层析方法,成功提取了可代表森林垂直结构信息的雷达后向散射功率垂直分布信息,并基于该信息提取了树高。应用地面实测样地对树高提取精度进行了检验,结果表明:HH极化树高提取精度最高(R2为0.65,RMSE为2.35 m,相关系数为0.80),HV其次,VV最差。 Applying P-band multibaseline InSAR data from BioSAR 2007 campaign in Raminstorp test site in Sweden by Multi-baseline Interferometric Tomographic SAR (MBInTomo SAR) technique to extract forest vertical structure information and estimate forest height from them,and validating the forest height with in situ data.The resuhs showed that the values of R^2 were 0.65,0.55,0.34,the values of RMSE were 2.35 m,3.27 m,5.13 m and the values of correlation coefficient (R) were 0.80,0.74,0.58 among the estimated forest heights using HH,HV and VV MBInTom SAR and Lidar H80,respectively.The conclusion is that the P-band multi-baseline InSAR data can beused for forest vertical structure information extraction and forest height estimation.And traditional forest scattering model and forest height estimation approach may not be suitable for P-band.
出处 《林业科学研究》 CSCD 北大核心 2014年第6期815-821,共7页 Forest Research
基金 863计划重点项目课题(2011AA120402) 国家973计划项目课题(2013CB733404)
关键词 多基线干涉层析SAR 森林垂直结构 树高 Capon频谱分析 MBInTomo SAR forest vertical structure forest height Capon spectrum
  • 相关文献

参考文献22

  • 1Anderson J H, Weber K T, Gokhale B, et al. Intercalibration and Evaluation of ResourceSat-1 and Landsat-5 NDVI. Canadian [ J ]. Journal of Remote Sensing, 2011, 37(2) : 213-219.
  • 2Fenshoh R, Proud S R. Evaluation of Earth Observation based global long term vegetation trends - Comparing GIMMS and MODIS global NDVI time series [ J ]. Remote Sensing of Environment, 2012, 119 : 131 - 147.
  • 3Wang Q, Tenhunen J, Dinh N Q, et al. Similarities in ground-and satellite-based NDVI time series and their relationship to physiologi- cal activity of a Scots pine forest in Finland[ J]. Remote Sensing of Environment, 2004, 93(1 ): 225-237.
  • 4Zhao D, Huang L, Li J, et al. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy[ J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62 (1): 25- 33.
  • 5Meroni M, Atzberger C, Vancutsem C, et al. Evaluation of agree- ment between space remote sensing SPOT-VEGETATION fAPAR time series[ J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2013, 41(4) : 1951 -1961.
  • 6Raleigh M S, Rittger K, Moore C E, et al. Ground-based testing of MODIS fractional snow cover in subalpine meadows and forests of the Sierra Nevada[ J]. Remote Sensing of Environment, 2013, 128 : 44 -57.
  • 7Steininger M. Satellite estimation of tropical secondary forest above- ground biomass: data from Brazil and Bolivia[J]. International Jour- nal of Remote Sensing, 2000, 21(6 -7) : 1139 - 1157.
  • 8Papathanassiou K, Moreira J. Interferometric analysis of multifre- quency and multipolarization SAR data[C]. Geoscience and Remote Sensing Symposium, 1996. IGARSS96. "Remote Sensing for a Sus-tainable Future., International, 1996, IEEE.
  • 9Cloude S R, Papathanassiou K P. Polarimetfic SAR interferometry [J] Geoscience and Remote Sensing, IEEE Transactions on, 1998, 36(5) : 1551 -1565.
  • 10Ferro-Famil L, L6pez-Martinez C, Pottier E. Analysis of Natural Scene Properties from POLinSAR Data Using Coherence Set Statis- tics and a Multi-Dimensional Speckle Model [ C ]. Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006.

同被引文献53

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部