期刊文献+

微波固相剥离制备石墨烯及其纳米流体的稳定性 被引量:7

Preparation of Graphene by Microwave-assisted Solid-state Exfoliation and Stability of Graphene Based Nanofluids
下载PDF
导出
摘要 利用简便快捷的微波固相剥离法将氧化石墨烯(Graphene oxide,GO)剥离成石墨烯(Microwave reduced graphene oxide,MRGO),并将得到的石墨烯通过超声分散于不同的基液中。采用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、拉曼光谱(Raman)、透射电镜(TEM)和紫外-可见光谱(UV-vis)对制备的样品进行了表征,发现通过这种方法可以使氧化石墨烯上的大部分含氧官能团得到去除。采用UV-vis,Zeta电位和沉淀物照片捕捉研究了pH值、超声时间和基液对石墨烯纳米流体稳定性的影响,发现经超声粉碎30min的石墨烯纳米流体能够保持均匀稳定达到一个月。此外,还分析了不同质量分数石墨烯-H2O纳米流体在不同温度下的导热系数,结果表明:石墨烯-H2O纳米流体的导热系数随着温度的升高和浓度的增大而提高,60℃时,质量分数为0.1%的石墨烯-H2O纳米流体的导热系数相对于基液提高了64%。 Graphene was prepared through a facile and fast method in which microwave-assisted solidstate exfoliation of graphene oxide(GO)was employed.Then the as-prepared graphene was dispersed in various base fluids by ultrasonication.X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),Raman spectroscopy(Raman),transmission electron microscope(TEM)and ultraviolet visible spectrometer(UV-vis)were used to characterize the samples.It is revealed that the majority oxygen-containing functional groups were removed from GO with this method.Influence of pH value,ultrasonication time and base fluid on stability of graphene based nanofluids were also investigated via UV-vis,Zeta potential and sediment photograph capturing.Graphene based nanofluids ultrasonicated for 30 min showed a good stability for 1 month.Besides,thermal conductivity of graphene-H2 O nanofluids with varying weight fractions at different temperatures was analyzed.The results showed that thermal conductivity of graphene-H2 O nanofluids enhances with the increase of temperature and weight fraction and thermal conductivity of graphene-H2 O nanofluids with the weight fraction of 0.1%at 60℃improves by 64%compared with that of the base fluid.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2014年第5期671-677,695,共8页 Journal of Materials Science and Engineering
基金 国家自然科学基金资助项目(51276044) 广东省自然科学基金资助项目(9251009001000006)
关键词 石墨烯 微波 纳米流体 稳定性 导热性能 Graphene Microwave Nanofluids Stability Thermal conductivity
  • 相关文献

参考文献28

  • 1Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids[J]. Renew. Sustain. Energy Rev, 2007, 11(3): 512-523.
  • 2Choi S. Enhancing thermal conductivity of fluids with nanoparticles[C]. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, November 12-17, 1995. Developments and Applications of Non-Newtonian Flows, New York, 1995, 99-105.
  • 3Mallick S S, Mishra A, Kundan L. An investigation into modelling thermal conductivity for alumina-water nanofluids[J]. Powder Teehnol, 2013, 233: 234-244.
  • 4Liu M S, Lin M C. -C, Tsai C Y, et al. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. Int J. Heat Mass Transf, 2006, 49 (17-18) :3028-3033.
  • 5彭小飞,俞小莉,夏立峰,罗爱娇.Al_2O_3纳米粉体悬浮液热物性实验研究[J].材料科学与工程学报,2007,25(1):52-54. 被引量:13
  • 6林海斌,张国贤,谢飞.分散剂PEG600对γ-Al_2O_3纳米流体分散性的影响[J].材料科学与工程学报,2010,28(3):366-369. 被引量:4
  • 7Chopkar M, Kumar S, Bhandari D R, et al. Development and characterization of AlzCu and AgzA1 nanopartiele dispersed water and ethylene glycol based nanofluid[J]. Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol, 2007, 139(2-3): 141- 148.
  • 8Chen L F, Xie H Q, Yu W, 'Li Y. Rheologicai Behaviors of Nanofluids Containing Multi-Walled Carbon Nanotube[J]. Dispersion Sci. Technol, 2011, 32(4): 550-554.
  • 9Munkhbayar B, Tanshen M R, Jeoun J, et al. Surfactam-free dispersion of silver nanoparticles into NiWCNT-aqueous nanofluids prepared by 0ne-step technique and their theri:nal charaeteristics[J]. H. Ceram Int, 2013, 89(6): 6415- 6425.
  • 10Meyer J C, Geiin A K, Ka'tsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446 (7131): 60- 63.

二级参考文献64

  • 1万德立,王勇,白清东.纳米粉体在水性介质中的分散及改性技术[J].国外建材科技,2005,26(1):25-28. 被引量:16
  • 2Sarit K D,Nandy P,et al.Temperature dependence of thermal conductivity enhancement for nanofluids[J].Journal of Heat Transfer,2003,125(8):566 ~ 574.
  • 3Lee S,Choi S U S,et al.Measuring thermal conductivity of fluids containing oxide nanoparticles[J].Transaction of ASME,1999,121(5):280 ~ 289.
  • 4Nagasaka Y,Nagasima A.Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by transient hot-wire method[J].Rev.Sci.Instrum.,1981,52(2):229 ~ 232.
  • 5Seok P J,S U S Choi.Role of Brownian notion in the enhanced thermal conductivity of nanofluids[J].Applied Physics Letters,2004,84(21):4316 ~ 4318.
  • 6Xuan Y M,Li Q.Heat transfer of nanofluids[J].Int.J.of Heat and Fluid Flow,2000.21(1):58~64.
  • 7Choi S U S,Yu W,Hull J R,et al.Nanofluids for vehicle thermal management[C].Vehicle thermal management systems conference & exhibition,2001.
  • 8朱冬生,李新芳,王先菊,李华,高进伟.氧化铝-水纳米流体的制备及其分散性研究[J].化工新型材料,2007,35(9):45-47. 被引量:24
  • 9A. K. Geim, A. H. MacDonald. Graphene , Exploring carbon f1atland[J]. Physics Today, 2007, 60(360): 35.
  • 10A. H. C. Neto , F. Guinea, N. Peres, K. Novoselov , A. Geim. The electronic properties of graphene[J]. Reviews of Modern Physics. 2009. 81 (136]): 109.

共引文献82

同被引文献42

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部