期刊文献+

直流电弧对工业硅埋弧炉内传热过程影响的数值模拟 被引量:4

Numerical Simulation of DC Arc Influence on Heat Transfer in Industrial Silicon Submerged Arc Furnace
下载PDF
导出
摘要 为优化直流埋弧炉工业硅冶炼过程,建立二维轴对称等离子体电弧的磁流体动力学模型,运用有限元分析软件,计算得到了等离子体电弧的形态特征分布,并与已有的实验测量结果进行了比较。通过计算不同电流、弧长条件下电弧的温度、速度变化以及熔池表平面的热通量组成分布,分析了电弧的形态变化规律和电弧的传热方式,由此计算不同电流值、不同电弧弧长的条件时,电弧向阳极熔池表面传热的效率。结果表明:弧长越长,向熔池表面传热的效率越小;电流越大,向熔池表面传热的效率越高。基于结果分析,工业硅生产应采用长电弧低电流高电压的冶炼模式。 In order to optimize the process of silicon smelting in the DC submerged arc furnace,a twodimensional axisymmetric magnetic hydrodynamic(MHD)model of plasma arc was established based on the software of finite element analysis.The distribution of morphological characteristics of the plasma arc was obtained,andwas compared with experimental data.By calculating the change of arc temperature,arc speed and the distribution of the thermal flux over the surface of molten bath were analyzed under the different current and arc length,the morphological changes regularity and the heat transfer of arc were analyzed.Thereby,the heat transfer efficiency of the arc on the anode of the bath surface was calculated under thesame conditions as above.The results show that:the longer of the arc,the lower the heat transfer efficiency can be obtained;and the larger of the electric current,the higher efficiency is shown.Based on this analysis,it is concluded that the melting pattern of industrial silicon should be long arc,low current and high voltage.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2014年第5期721-726,768,共7页 Journal of Materials Science and Engineering
基金 国家自然科学基金资助项目(51066003)
关键词 直流埋弧炉 工业硅 数值模拟 电弧传热 DC submerged arc furnace metallurgical silicon Numerical simulation Arc heat transfer
  • 相关文献

参考文献6

二级参考文献54

  • 1王丰华,金之俭,朱子述.直流电弧炉电弧等离子体射流的数值模拟[J].高压电器,2005,41(4):241-244. 被引量:11
  • 2WANG Feng-hua JIN Zhi-jian ZHU Zi-shu.Fluid Flow Modeling of Arc Plasma and Bath Circulation in DC Electric Arc Furnace[J].Journal of Iron and Steel Research International,2006,13(5):7-13. 被引量:5
  • 3董志刚,康仁科,金洙吉,王宁会.单晶MgO基片超精密加工技术研究[J].人工晶体学报,2006,35(6):1372-1377. 被引量:2
  • 4Hauksdottir A S, Gestsson A, Vesteinsson A. Submerged-Arc Ferrosilicon Furnace Simulator: Validation for Different Furnaces and Operating Ranges [J].Control Engineering Practice, 1998, 6(8): 1035.
  • 5Alexis J, Ramirez M, Trapaga G, et al. Modeling of a DC Electric Arc Furnace-Heat Transfer From the Arc [J]. ISIJ International, 2000, 40(11): 1089.
  • 6Yang Y, Xiao Y, Reuter M A. Analysis of Transport Phe nomena in Submerged Arc Furnace for Ferroehrome Production [C] //Gelen H. Proceedings of Tenth International Ferroalloys Congress. Cape Town: SAIMM. 2004: 15.
  • 7Bowman B. Effects on Furnace Arcs of Submerging by Slag [J]. Ironmaking and Steelmaking, 1990, 17(2): 123.
  • 8Bowman B. Properties of Arcs in DC Furnace [C] //52nd Electric Furnace Conference Proceeding. Nashvile: ISS-AIME, 1994: 111.
  • 9Saevarsdottir G A, Bakken J A, Sevastyanenko V G, et al. Modeling of AC Arcs in Submerged Are Furnaces for Production of Silicon and Ferrosilicon[J]. Iron and Steelmaker, 2001, 28(10): 51.
  • 10Douce A, Delalondere C, Biausser H, et al. Numerical Modeling of an Anodic Metal Bath Heated With an Argon Transferred Arc [J]. ISIJ International, 2003, 43(8): 1128.

共引文献39

同被引文献289

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部