期刊文献+

飞秒脉冲激光穿越大气层的特性

Propagation characteristics of femtosecond laser pulses through atmosphere
原文传递
导出
摘要 对不同脉宽、不同中心波长、不同入射天顶角情况下飞秒激光脉冲在大气层中的传输特性进行了数值模拟.理论计算结果表明,在50 km高空大气的二阶色散值为3.44×10-6 ps2/km,与大气在海平面的二阶色散值(2.09×10-2 ps2/km)相比,约小4个数量级;在激光脉冲非垂直发射情况下,当入射天顶角小于60°时,谱宽为40 nm的飞秒激光脉冲的蒙气差值、大气角色散值以及时域色散导致的脉冲展宽量均会随入射天顶角缓慢增加,当入射天顶角大于60°时,这种增长会急剧变大.大气的角色散作用还会使传输光束的横向尺寸和光谱空间分布发生改变,但其改变量要远小于直径为200 mm的光束的衍射效应产生的相应变化.在垂直发射条件下,对于厚度为50 km的大气层而言,800,1064,1550 nm三个不同中心波长的瑞利脉冲宽度分别为700,605,495 fs.由于入射天顶角的增加直接导致有效传输光程增加,随着入射天顶角由0°增至90°,瑞利脉宽单调增加,最大可增至垂直发射时的3倍左右. The propagation characteristics of femtosecond laser pulses of various temporal durations and central wavelengths are numerically investigated. These characteristics are required when transmitting pulses through the atmosphere at different incident zenith angles. The second-order calculations show that at altitudes of 50 km the dispersion is about 3.44×10-6 ps2/km, significantly less than the corresponding value of 2.09×10-2 ps2/km at sea level. For incident zenith angles below 60°, the difference in the refraction of the various spectral components of femtosecond laser pulses, as well as the pulse duration expansion caused by dispersion, rises gradually with increasing incident zenith angle; for zenith angles above 60°, the rise is much higher. Whereas atmospheric angular dispersion can lead to changes in the spatial distribution of the spectrum and also the transverse dimension of the transmitted beam, such changes in angular dispersion for a 200-mm diameter beam are negligible when compared with the change in diameter from diffraction. Numerical calculations predict that the Rayleigh pulse width for 50 km thick atmosphere at the 0° incident zenith angle are 700, 605, and 495 fs respectively for wavelengths centered at 800, 1064, and 1550 nm, respectively. Because an increasing incident zenith angle will inevitably cause an increase in the effective optical path length, the Rayleigh pulse width at different wavelengths will rise monotonically for angles from 0° to 90°. Near the zenith angle of 90°, this width can be more than three times larger than that at the zenith angle of 0°.
出处 《科学通报》 EI CAS CSCD 北大核心 2014年第35期3453-3461,共9页 Chinese Science Bulletin
基金 国家自然科学基金(11004111,11274185,61137001)资助
关键词 飞秒激光脉冲 大气折射 大气脉冲展宽 瑞利脉宽 femtosecond laser pulse astronomical refraction atmospheric pulse broadening Rayleigh pulse width
  • 相关文献

参考文献18

  • 1Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range. Nat Photonics, 2009, 3: 351-356.
  • 2Joo K N, Kim Y, Kim S W. Distance measurements by combined method based on a femtosecond pulse laser. Opt Express, 2008, 16: 19799-19806.
  • 3Lee S H, Lee J, Kim Y J, et al. Active compensation of large dispersion of femtosecond pulses for precision laser ranging. Opt Express, 2011, 19: 4002-4008.
  • 4Malinauskas M, ?ukauskas A, Purlys V, et al. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. J Opt, 2010, 12: 124010.
  • 5Parigger C G, Johnson J A, Splinter R. Optical diagnostic and therapy applications of femtosecond laser radiation using lens-axicon focusing. 2013 35th Annual International Conference of the IEEE. New York: IEEE, 2013. 374-377.
  • 6Raoof-Daneshvar D, Shtein R M. Femtosecond lasers in ophthalmology. US Ophthalmic Rev, 2013, 6: 38-41.
  • 7Edlen B. The dispersion of standard air. Josa, 1953, 43: 339-344.
  • 8Edlén B. The refractive index of air. Metrologia, 1966, 2: 71.
  • 9Owens J C. Optical refractive index of air: Dependence on pressure, temperature and composition. Appl Opt, 1967, 6: 51-59.
  • 10武腾飞,梁志国,严家骅.飞秒激光测距中空气色散补偿理论研究[J].中国激光,2012,39(12):162-167. 被引量:8

二级参考文献17

  • 1K. Minoshima, H. Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Appl. Opt. , 2000, 39(30) . 5512-5517.
  • 2J. Ye. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Opt. Lett. , 2004, 29(10) . 1153-1155.
  • 3M. Cui, R. N. Schouten, N. Bhattacharyaet al. Experimental demonstration of distance measurement with a femtosecond frequency comb laser[J]. J. Euro. Opt. Soc. Rap. Public, 2008, 3- 08003.
  • 4I. Coddington, W. C. Swann, L. Nenadovic et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6) : 351-356.
  • 5K. N. Joo, Y. Kim, S. W. Kim. Distance measurements by combined method based on a femtosecond pulse laser[J]. Opt. Express, 2008, 16(24) : 19799-19806.
  • 6J. Lee, Y. Kim, K. Lee-Cal. Time-of-flight measurement with femtosecond light pulses [ J ]. Nature Photonics, 2010, -(10) - 716-720.
  • 7Tengfei Wu, Changhe Zhou, Jiangjun Zheng et al. Generation of double femtosecond pulses by using two transmissive gratings [J]. Appl. Opt., 2010, 49(24) : 4506-4513.
  • 8C. Rulli-re. Femtosecond Laser Pulses Principles and Experiments (2nd Edition)[M]. New York: Springer Science and Business Media, 2004. 32-33.
  • 9S. H. Lee, J. Lee, Y. J. Kim et al. Active compensation of large dispersion of femtosecond pulses for precision laser ranging [J]. Opt. Express, 2011, 19(5): 4002-4008.
  • 10J. A. Stone, J. H. Zimmerman. Index of Refractive of Air[EB/ OL]. http://emtoolbox, hist. gov/Wavelength/Doeumentation. asp. [2001-05-16].

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部