期刊文献+

纳米银改性钛片对口腔常见致病菌抗菌性能实验研究 被引量:1

Anti-bacterial testsof silver nanoparticle-modified titanium surface
原文传递
导出
摘要 目的:通过纳米银改性钛片对牙龈卟啉单胞菌和伴放线放线杆菌抗菌能力的观察,探讨口腔种植体颈部钛表面抗菌改性的可行性。方法:实验组为纳米银改性钛片,对照组为光滑钛片,每组各10片。通过贴膜法和抗粘附实验两种方法检测纳米银改性钛片的抗菌性能。结果:贴膜法显示培养24 h后纳米银改性钛片对牙龈卟啉单胞菌和伴放线放线杆菌的抗菌率达到90%;抗粘附实验显示牙龈卟啉单胞菌散在分布,且对照组多于实验组,伴放线放线杆菌散在分布对照组钛片上大量粘附,呈片状或团状集聚在一起。结论:纳米银改性后的钛片抗菌性能突出,是一种具有前景的抗菌生物植入材料。 Objective:Porphyromonas gingivalis(Pg) and actinobacillusactinomycetemcomitans(Aa) were obtained to test the anti-bacterial effect of the Ti-nAg surface and to investigate the possibility of surface modification of titanium which used in dental implant. Method:nano-silver modified titanium plate as test group,while smooth titanium plate as control group,each group has 10 plates. the SEM exanimation of anti-adhesive efficacy testwas utilized. Result: Two type bacteria, Porphyromonas gingivalis(Pg) and actinobacillusactinomycetemcomitans(Aa)were obtained to test the anti-bacterial effect of the Ti-nAg surface. After 24-hour incubation,over 90 % of bacteria have been killed on the Ti-nAg surface,and the SEM exanimation of anti-adhesive efficacy test showed that there were less bacteria attached to Ti-nAg surface than to control Titanium surface,the inhibition of the bacterial growth depends on a sufficient concentration of silver ions in thesurrounding aqueous environment. Conclusion:These data suggest that silver nanoparticle-modified titanium is a promising material with an antibacterial property that may be used as an implantable biomaterial.it is possible that the silver dissociated from the titanium surface did not reach a concentration that is sufficient to inhibit bacterial growth.
出处 《临床口腔医学杂志》 2014年第12期718-720,共3页 Journal of Clinical Stomatology
关键词 纳米银 种植 口腔 牙龈卟啉单胞菌 伴放线放线杆菌 nano-sliver titanium implant dental: Porphyromonas gingivalis (Pg) actinobacillusactinomycetemcomitans(Aa)
  • 相关文献

参考文献12

  • 1Li Y BE, E1-Sayed MA. Size effects of PVP-Pd nanoparticles on the catalytic suzuki reactions in aqueous solution [J]. Langmuir, 2002,18 (12) : 4921-4925.
  • 2Tronc E FD, Nogues M. Surface effects in noninteracting and intera- cting γ-Fe2O3 nanoparticles [J]. Journal of Magnetism and Magnetic Materials, 2003, 262 (1) : 6-14.
  • 3Volokitin Y SJ,Jongh DLJ. Quantum-size effects in the thermody- namic properties of metallic nanoparticles [J]. Nature, 1996,384 (6610) : 621-623.
  • 4Wernsdorfer W OEB, Hasselbach K. Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium fer- rite [J]. Physical Review Letters, 1997,97 (20) : 4014-4017.
  • 5Au L ZD,Zhou F. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells [J]. ACS Nano, 2008,2 (8) : 1645-1652.
  • 6N LL. Chemical catalysis by colloids and clusters [J]. Chemical Re- views 2003,93 (8) : 2693-2730.
  • 7Ooij DZaWJv. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis- [triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl]amine [J]. Electrochim Acta, 2004,49 (7) : 1113-1125.
  • 8Deflorian F, Rs, Fedrizzi L. Silane pre-treatments on copperand alu- minium[J]. Electrochim Acta, Available online 2006.
  • 9Doron A KE, Willner I. Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces:Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers [J]. Langmuir, 1995,11: 1313-1317.
  • 10Aslan K, Leonenko Z, Lakowicz JR, et al. Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluo-rescence [J]. J Phys. Chem B, 2005 (109) : 3157-3162.

同被引文献29

  • 1陈炯,韩春茂,林小玮,唐志坚,苏士杰.纳米银敷料在修复Ⅱ度烧伤创面的应用研究[J].中华外科杂志,2006,44(1):50-52. 被引量:88
  • 2Finley PJ, I-Iuckfeldt RE, Walker KD, et al. Silver dressings improve diabetic wound healing without reducing bioburden [ J 1. Wounds, 2013, 25 (10):293-301.
  • 3Madhumathi K, Sudheesh Kumar PT, Abhilash S, et al. Devel- opment of novel chitin/nanosilver composite scaffolds for wound dressing applications[J]. J Mater Sci Mater Ned, 2010, 21 (2) :807-813.
  • 4Ciloglu MS, Mert AI, Dogan Z, et al. Efficacy of silver-loaded nanofiber dressings in Candida albicans-contaminated full-skin thickness rat burn wounds[ J]. J Burn Care Res, 2014, 35 (5) : E317-E320.
  • 5Zheng Z, Yin W, Zara JN, et al. The use of BMP-2 coupled- Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects [ J 1. Biomaterials, 2010, 31 (35) : 9293-9300.
  • 6Alt V, Bechert T, Steinracke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate sil- ver bone cement[ Jl. Biomaterials, 2004, 25 ( 18 ) :4383-4391.
  • 7Pauksch L, Hartmann S, Rohnke M, et al. Bioeompatibility of silver nanoparticles and silver ions in primary human mesenchy- real stem cells and osteoblasts[Jl. Acta Biomater, 2014, 10 (1):439-449.
  • 8Edmiston CE Jr, Markina V. Reducing the risk of infection in vascular access patients : an in vitro evaluation of an antimicrohial silver nanotechnology luer activated device [ J ] Control, 2010, 38(6) :421-423.
  • 9Takenaka S, Karg E, Roth C, et al. Pulmonary and systemic dis- tribution of inhaled ultrafine silver particles in rats [ Jl. Environ Health Perspect, 2001, 109 Suppl 4 : $547-551.
  • 10Soto K, Garza KM, Murr LE. Cytotoxic effects of aggregated nanomaterials[J]. Acta Bimnater, 2007, 3(3):351-358.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部