期刊文献+

肌肉自发振动过程中结合几率与化学反应速率的变化

Change of the Binding Probability and Chemical Reaction Rate in Spontaneous Oscillatory Contraction of Muscles
下载PDF
导出
摘要 定量分析肌球蛋白与肌动蛋白丝的结合几率及相关化学反应的速率常数,对于准确掌握肌肉收缩的内在机制具有非常重要的意义.以肌肉自发振动的实验结果为依据,从振动过程所满足的动力学方程出发,推导出结合几率与肌丝滑行速度及肌节长度之间的定量关系,并求得化学反应速率随肌肉收缩的速度变化而改变的数学规律.结果显示,结合几率的基准值由溶液中主要化学成分的浓度决定;结合几率的变化值与肌肉收缩的速度成正比,与肌节长度成反比;而化学反应速率随收缩速度按指数规律变化.上述结果与实验值基本一致. Quantitative analysis of the binding probability of myosin and actin filament and its related chemical reaction rate constants is very important to understand the intrinsic mechanism of muscle contraction. Based on the experiment results of spontaneous oscillatory contraction of muscles(SPOC), the quantitative relationship of the binding probability to the concentration of solution, sarcomere length and the sliding speed of actin filaments are deduced from the kinetic equation describing SPOC. Mathematical law reflected the change of the chemical reaction rate with the muscle contraction velocity is established also. The results show the follow three conclusions:one is that the baseline value of the binding probability is determined by the concentration of the main chemical components in the solution, the second is that the binding probability is directly proportional to the sliding speed and inversely proportional to the sarcomere length,and the third is that the chemical reaction rate is exponentially related to the contraction speed. These conclusions are in agreement with the experimental results.
出处 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2015年第1期61-65,共5页 Journal of Inner Mongolia University:Natural Science Edition
基金 内蒙古自治区自然科学基金重大项目(2011ZD01) 内蒙古自治区自然科学基金项目(2014MS0355) 内蒙古自治区高等学校科学研究项目(NJZY14012)
关键词 肌肉收缩 自发振动 结合几率 化学反应速率 muscle contraction SPOC binding probability chemical reaction rate
  • 相关文献

参考文献21

  • 1Shimamoto Y, Kono F, Suzuki M, et al. Nonlinear force-length relationship in the ADP-induced contraction of skeletal myofibrils[J]. Biophys J, 2007,93 : 4330-4341.
  • 2Terui T,Shimamoto Y, Yamane M. Regulatory mechanism of length-dependent activation in skinned porcine ven- tricular muscle:role of thin filament cooperative activation in the Frank-Starling relation[J]. Gen Physiol, 2010, 136(4) :469-82.
  • 3Sato K, Ohtaki M, Shimamoto Y, et al. A theory on auto-oscillation and contraction in striated muscle[J]. Prog Biophys Mol Bio1,2011,105(3) : 199-207.
  • 4Howard J. Molecular motor : structural adaptations to cellular function[J]. Nature, 1997,389 : 561-567.
  • 5郭维生,罗辽复.肌球蛋白工作循环的一个新模型[J].生物化学与生物物理进展,2003,30(2):216-220. 被引量:10
  • 6Huxley A F. Muscle structure and theories of contraction [J]. Prog Biophys Biophys Chem, 1957,7:255-318.
  • 7Gordon A M, Huxley A F,Julian F J. The variation in isometric tension with sarcomere length in vertebrate mus- cle fibres[J]. J Physiol, 1966,184 : 170-192.
  • 8Dilson E,Rassier. Muscle Biophysics :From Molecules to Cells (Advances in Experimental Medicine and Biolo- gy)[M]. Berlin: Springer, 2010 : 10-11.
  • 9Shimamoto Y, Suzuki M, Ishiwata S. Length dependent activation and auto-oscillation in skeletal myofibrils at partial activation by Ca2+ [J]. Biochem Biophys Res Com mun, 2008,366 : 233-238.
  • 10Piazzesi G, Reeonditi M, Linari M,et al. Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size[J]. Cell,2007,131:784-795.

二级参考文献15

  • 1Rayment I, Rypniewski W R, Schmidt-Base K, et al. Three-dimensional structure of myosin subfragment-1 : a molecular motor.Science, 1993, 261 (5117) : 50--59.
  • 2Finer J T, Simmons R M, ,Spudich J A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature, 1994,368 (6467): 113--119.
  • 3Molloy J E, Burns J E, Kendrick-Jones J, et al. Movement and force produced by a single myosin head. Nature, 1995, 378(6553) : 209--212.
  • 4Payment I, Holden H M, Whittaker M, et al. Structure of the actin-myosin complex and its implications for muscle contraction.Science, 1993, 261 (5117): 56--65.
  • 5Spudich J A. How molecular motor work. Nature, 1994, 372(6506) : 515~518.
  • 6Kitamura K, Tokunaga M, Iwane A H, et al. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature, 1999, 397 (6715) : 129--133.
  • 7Houdusse A, Sweeney H L. Myosin motors: missing structures and hidden springs. Current Opinion on Structure Biology, 2001,11 (2): 182--194.
  • 8Suzuki Y, Yasunaga T, Ohkura R, et al. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps.Nature, 1998, 396 (6709): 380--383.
  • 9Luo L F. Conformation dynamics of macromolecules. Int J Quant Chem, 1986, 32 (4) : 380~392.
  • 10Baker J E, Laconte L E, Brust-Mascher I, et al.Mechanochemical coupling in spin-labeled, active, isometric muscle. Biophys J, 1999, 77 (5): 2657--2664.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部