期刊文献+

Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity

Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity
下载PDF
导出
摘要 Plasmon modes in graphene can be tuned into resonance with an incident terahertz electromagnetic wave in the range of 1–4 THz by setting a proper gate voltage. By using the finite-difference-time-domain(FDTD) method, we simulate a graphene plasmon device comprising a single-layer graphene, a metallic grating, and a terahertz cavity. The simulations suggest that the terahertz electric field can be enhanced by several times due to the grating–cavity configuration. Due to this near-field enhancement, the maximal absorption of the incident terahertz wave reaches up to about 45%. Plasmon modes in graphene can be tuned into resonance with an incident terahertz electromagnetic wave in the range of 1–4 THz by setting a proper gate voltage. By using the finite-difference-time-domain(FDTD) method, we simulate a graphene plasmon device comprising a single-layer graphene, a metallic grating, and a terahertz cavity. The simulations suggest that the terahertz electric field can be enhanced by several times due to the grating–cavity configuration. Due to this near-field enhancement, the maximal absorption of the incident terahertz wave reaches up to about 45%.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期394-397,共4页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.61271157) Jiangsu Planned Projects for Postdoctoral Research Funds,China(Grant No.1301054B) Suzhou Industry and Technology Bureau,China(Grant No.ZXG2012024)
关键词 finite-difference-time-domain simulation GRAPHENE PLASMON TERAHERTZ finite-difference-time-domain simulation graphene plasmon terahertz
  • 相关文献

参考文献22

  • 1Chen H T, Padilla W J, Zide Joshua M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597.
  • 2Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494.
  • 3Wu H Q, Linghu C Y, Lu H M and Qian H 2013 Chin. Phys. B 22 098106.
  • 4Geim A K and Novoselov K S 2007 Nat. Mater. 6 183.
  • 5Ryzhii V 2006 Phys. Rev. B 45 923.
  • 6Ryzhii V, Satou A and Otsuji T 2007 Appl. Phys. 101 024509.
  • 7Jablan M, Buljan H and Solja?i? M 2009 Phys. Rev. B 80 245.
  • 8Hwang E H and Sarma S D 2007 Phys. Rev. B 75 205418.
  • 9Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630.
  • 10Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P and Xia F N 2012 Nat. Nanotechnol. 80 330.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部