摘要
设R是一个含有非零单位元的有限交换环,U(R)是R的单位群,G是U(R)的一个乘法子群,S是G的一个非空子集并且S-1={s-1|s∈S}S。单位Cayley图Cay(R,U(R))的顶点集是R,两个顶点x和y相邻当且仅当x-y∈U(R);而广义单位Cayley图Γ(R,G,S)的顶点集为R,两个顶点x与y相邻当且仅当存在s∈S,使得x+sy∈G。容易看出,当G=U(R)时,Γ(R,G,{-1})即为单位Cayley图。本文主要利用有限交换环的结构以及群与图的理论,研究了有限交换环上的广义单位Cayley图的一些性质,讨论了Γ(R,G,{s})的正则性,以及Γ(R,U(R),{s})中任意两点的公共邻接点个数和边着色数。
Let R be a finite commutative ring with non-zero identity and U(R) be the unit group of R. Suppose that G is a multiplicative subgroup of U(R), and S is a non-empty subset of G such that S 1= {s^-1|s∈S}∈S. Then the vertex set of unitary Cayley graph Cay(R,U(R)) is R, and two distinct vertices x and y are adjacent if and only if x-y∈U(R). Γ(R,G,S) is a graph whose vertex set is R, and vertices x and y are adjacent if and only if there exists sES such that x+sy∈G. Obviously, if G=U(R), then Γ(R,G,{-1}) is the unitary Cayley graph. By the structure of a finite commutative ring and the theory of group and graph, we study some properties of a generalization of the unitary Cayley graphs of a finite commutative ring. We consider the regularity of a generalization of the unitary Cayley graphs Γ(R,G, {s} ), and determine the number of common neighbors of two distinct vertices of Γ(R,U(R), { s} ). In addiction, evaluate the edge chromatic number of Γ(R,U(R), { s}).
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第1期60-63,共4页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11071089)
广东省自然科学基金(No.10151063201000005)
关键词
交换环
单位Cayley图
正则图
边着色数
commutative ring
unitary Cayley graphs
regular graph
edge chromatic number