期刊文献+

Influence of thermal and resonance neutron on fast neutron flux measurement by ^(239)Pu fission chamber

Influence of thermal and resonance neutron on fast neutron flux measurement by ^(239)Pu fission chamber
原文传递
导出
摘要 The ^239Pu fission chambers are widely used to measure fission spectrum neutron flux due to a fiat response to fast neutrons. However, in the meantime the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using ^10B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of ^239gpu are measured as 1.791 × 10^-16 2.350 × 10^-16 and 1.385×10^-15 per second for 15 mm thick ^10B cover, 0.5 mm thick Cd cover, and no cover respectively, while the fission reaction rate of 239pu is rapidly increased to 2.569×10^-14 for a 20 mm thick polythene covering fission chamber. The average 239pu fission cross-section of thermal and resonance neutrons is calculated to be 500 b and 24.95 b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30×10^6, 2.24×10^6 and 1.04×10^8 cm^-2·s^-1. The ^239Pu fission chambers are widely used to measure fission spectrum neutron flux due to a fiat response to fast neutrons. However, in the meantime the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using ^10B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of ^239gpu are measured as 1.791 × 10^-16 2.350 × 10^-16 and 1.385×10^-15 per second for 15 mm thick ^10B cover, 0.5 mm thick Cd cover, and no cover respectively, while the fission reaction rate of 239pu is rapidly increased to 2.569×10^-14 for a 20 mm thick polythene covering fission chamber. The average 239pu fission cross-section of thermal and resonance neutrons is calculated to be 500 b and 24.95 b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30×10^6, 2.24×10^6 and 1.04×10^8 cm^-2·s^-1.
出处 《Chinese Physics C》 SCIE CAS CSCD 2015年第1期50-53,共4页 中国物理C(英文版)
基金 Supported by National Natural Science Foundation of China(91326109)
关键词 fission chamber neutron flux thermal and resonance neutrons fast neutrons fission chamber, neutron flux, thermal and resonance neutrons, fast neutrons
  • 相关文献

参考文献10

  • 1Stenkin Yu V, Alekseenko V V, Gromushkin D M et al. Chin. Phys. C. 2013, 37(efeq1): 015001-015001.
  • 2WANG Wen-Xin, ZHANG Yi, WANG Ji-Jin, HU Bi-Tao. Chin. Phys. C. 2009, 33(efeq2): 110-113.
  • 3Cabellos O, Fernádez P, Rapisardac D, García-Herranz N et al. Nucl. Instrum. Methods Phys. Res. A, 2010, 618(1-3): 248-259.
  • 4SONG Yu-Shou, Margaryan A, HU Bi-Tao, TANG Li-Guang. Chin. Phys. C, 2011, 35(8): 758-762.
  • 5Chuklyaev S V, Pepyolyshev Yu N, Artem'ev V A. Instrum. Exp. Techn., 2002, 45(efeq2): 162-166.
  • 6Unesaki Hironobu, Iwasaki Tomohiko, Kitada Takanori et al. Nucl. Sci. Technol., 2000, 37(8): 627-635.
  • 7Loaiza D, Daniel Gehman. Ann. Nucl. Energy, 2006, 33: 1339-1359.
  • 8TIAN J M, XU M H, ZHAO ZL et al. Chin. Phys. C, 2012, 36(4): 329-333.
  • 9Calviani M, Cennini P, Karadimos D, Ketlerov V, Konovalov V, Furman W, Goverdowski A, Vlachoudis V, Zanini L. Nucl. Instrum. Methods Phys. Res. A, 2008, 594(efeq2): 220-227.
  • 10Loiseau P et al. Nucl. Instrum. Methods Phys. Res. A, 2013, 707: 58-63.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部