摘要
For the accelerator driven subcritical system (ADS) main linac in China, two families of superconducting elliptical radio frequency (RF) cavities will be used to accelerate the proton beam from 180 MeV to 1.5 GeV. When the proton beam traverses in the RF cavity, the excited parasitic modes, like high order modes (HOMs) and same order modes (SOMs), may drive the beam to become unstable and increase the cryogenic load, thus putting a limitation on the normal operation of the accelerator. In this paper, by using a numerical code SMD based on the ROOT environment, the effects of longitudinal parasitic modes on the beam dynamics for the ADS driving linac in China have been investigated systematically, while parasitic modes which increase cryogenic loss have not been included in this paper. Some conclusions concerning the beam energy ranging from 180 MeV to 1.5 GeV have been obtained.
For the accelerator driven subcritical system (ADS) main linac in China, two families of superconducting elliptical radio frequency (RF) cavities will be used to accelerate the proton beam from 180 MeV to 1.5 GeV. When the proton beam traverses in the RF cavity, the excited parasitic modes, like high order modes (HOMs) and same order modes (SOMs), may drive the beam to become unstable and increase the cryogenic load, thus putting a limitation on the normal operation of the accelerator. In this paper, by using a numerical code SMD based on the ROOT environment, the effects of longitudinal parasitic modes on the beam dynamics for the ADS driving linac in China have been investigated systematically, while parasitic modes which increase cryogenic loss have not been included in this paper. Some conclusions concerning the beam energy ranging from 180 MeV to 1.5 GeV have been obtained.