摘要
The assessment of the water losses by actual evapotranspiration plays a very important role in water resources management, especially in particular environments suffering soil water stresses and water shortages. The rationales of this study are the scarcity of experimental data, the difficulties in the measurement of direct and continuous evapotranspiration fluxes, and the switching between controls by climate and soil water availability. The temporal patterns of observed soil moisture and air temperature of over three years at an experimental site in southern Italy have been analysed to investigate the relation between them and the actual evapotranspiration volume, estimated using the soil water budget method. To this end, an event-based empirical analysis has been performed, exploring the relation between the mentioned variables. One of the major findings of the explorative phase is the qualitative and quantitative identification of the switching between climate and soil water balance as the controls over actual evapotranspiration at the experimental site. This threshold process has then been modelled at the event and sub-event scale, establishing simple empirical equations to predict actual evapotranspiration losses as a function of soil water content. Multilevel-recorded data also allowed the investigation of the importance of soil depth.
The assessment of the water losses by actual evapotranspiration plays a very important role in water resources management, especially in particular environments suffering soil water stresses and water shortages. The rationales of this study are the scarcity of experimental data, the difficulties in the measurement of direct and continuous evapotranspiration fluxes, and the switching between controls by climate and soil water availability. The temporal patterns of observed soil moisture and air temperature of over three years at an experimental site in southern Italy have been analysed to investigate the relation between them and the actual evapotranspiration volume, estimated using the soil water budget method. To this end, an event-based empirical analysis has been performed, exploring the relation between the mentioned variables. One of the major findings of the explorative phase is the qualitative and quantitative identification of the switching between climate and soil water balance as the controls over actual evapotranspiration at the experimental site. This threshold process has then been modelled at the event and sub-event scale, establishing simple empirical equations to predict actual evapotranspiration losses as a function of soil water content. Multilevel-recorded data also allowed the investigation of the importance of soil depth.
基金
provided through the Ministry of Education and Science of the Russian Federation and Italian Ministry of University and Research under the grant ORSA128417