期刊文献+

基于电磁场原理的航天器变频吸振技术

Spacecraft adaptive vibration absorber based on electronic magnetic field
下载PDF
导出
摘要 为了有效抑制航天器转动部件对敏感载荷的扰动,将电磁技术应用于变频吸振器上,从经典电磁理论出发,建立了斥力悬浮型电磁变频装置的数学模型。该型电磁变频装置通过两个电磁铁对中间的永磁体产生排斥作用来产生恢复力:当中间永磁体偏离平衡位置时,由于两边电磁铁斥力的非线性变化使得二者对中间永磁体产生一个指向平衡位置的恢复力。理论分析表明,在气隙不大的情况下,该力与永磁体偏离平衡位置的位移成正比,同时其与电磁铁中通入的电流成正比关系,进一步的仿真也验证了该结论,这为有效、精确控制变频吸振器的工作频率提供了理论依据。根据理论计算和有限元仿真,采用了电磁技术的变频装置可以提供4 500 N/m左右的刚度变化范围,应用该变频装置的吸振器可以提供近50 Hz的频率变化范围,同时其调节速度和精度也能满足航天器对变频吸振器相关性能的要求。 The rotating parts on the spacecraft can seriously disturb working payload. In order to decrease this effect, electronic magnetic technology was applied to adaptive vibration absorber. This EM frequency control system worked through the repulsions from two electromagnets: when the central magnet left the balance place, repulsions of the electromagnets on both sides of the magnet would change. Because of the nonlinearity of the repulsions, the combining force would point to the balance just like a restoring force.Theoretical analysis showed that if the distance between the two electromagnets was sufficiently small,such restoring force was proportional to the displacement of central magnet from the balance place. Furthermore, it was also proportional to the currency in the electromagnet. These conclusions are supported by simulation too. That means it can be taken as the base of an effective, high-accurate DVA control method. According to the theoretical calculation and FEM simulation results, the whole system can change its stiffness in a range of 4 500 N/m. Through choosing right mass ratio, the adaptive vibration absorber could adjust its working frequency in a range of 50 Hz. The performance of the vibration absorber can meet the need of spacecraft.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第B12期18-23,共6页 Infrared and Laser Engineering
基金 第二届高分辨率对地观测学术年会青年创新基金
关键词 变频吸振 电磁弹簧 振动抑制 adaptive vibration absorber EM spring vibration control
  • 相关文献

参考文献9

  • 1Bialke B. A compilation of reaction wheel induced spacecraft disturbances[C]//Proceedings of the 20th Annual AAS Guidance and Control Conference, 1997.
  • 2Eyerman C E, Shea J F. A systems engineering approach to disturbance minimization for spacecraft utilizing controlled structures technology[R]. MIT SERC Report#2-90,1990.
  • 3Masterson R. Development and validation of empirical and analytical reaction wheel disturbance models[D]. MIT, 1999.
  • 4Melody J W. Discrete-frequency and broadband reaction wheel disturbance models [J]. Interoffice Memorandum, 1995, 95(3411): 200.
  • 5虞自飞,周徐斌,杜冬.卫星敏感载荷振动的吸振方法研究[c]//中国空间科学学会空间机电与空间光学专业委员会2012年学术交流会论文集,2012.
  • 6Franchek M A, Ryan M W, Bernhard R J. Adaptive passive vibration con~ol[J]. Journal of Sound and Vibration, 1995, 189(5): 565-585.
  • 7Bonello P, Brennan M J, Elliott S J. Vibration control using an adaptive tuned vibration absorber with a variable curvature stiffness element[J]. Smart Materials and Structures, 2005, 14 (5): 1055-1065.
  • 8Nagaya K, Kurusu A, Ikai S, et al. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control {J], Journal of Sound and Vibration, 1999, 228(4): 773-792.
  • 9项海筹,王玉英,唐锡宽.电磁式弹簧刚度连续可调消振器:中国,1016983B[P].1992-06-10.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部